Product Environmental Aspects Declaration

EP and IJ printer (PCR-ID:AD-04)

是COLEAD 製品環境情報 http://www.jemai.or.jp

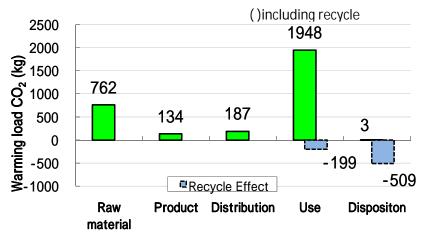
No. AD-14-E362
Date of publication
Mar./17/2014

TOSHIBA TEC CORPORATION

Corporate Quality & Environmental Group

TEL: +81-3-6830-9100

URL http://www.toshibatec.co.jp


E-STUDIO 857

Marking technologies : Electrophotographic Printer(EP) Printing Speed: 85 LTR Pages per minutes (B/W)

Maximum Paper Size: LD

Duplex copying: Standard, Document feeding: RADF The number of copies when used for 5 years is 4,335,000.

Consumption and discharge in a life cycle	All the stage sum totals			
Global Warming(CO ₂ equivalent)	3,035(2,327)kg			
Acidification(SO ₂ equivqlent)	4.3(3.3)kg			
Energy resources(crude oil equivalent)	62,300(50,800)MJ			

Notes

- 1. Original LCA data is available on PEIDS: Product Environmental Information Declaration Sheet, and Product Data Sheet.
- Unified rules and requirements for EcoLeaf LCA, for intended product category, are available as a PCR: Product Category Rule. Visit EcoLeaf website under JEMAI homepage at http://www.ecoleaf-jemai.jp/eng/ for details.
- Basic Units used for calculations are based on Japan domestic data at this time, due to a lack of base data to establish localized Basic Unit for overseas locations adequately.

This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

[Supplemental environmental information]

- · Certified to the international ENERGY STAR Program V2.0
- · Manufactured at ISO14001 certified factories
- · Plastic housing: halogenated flame retardants are free

PCR review was conducted by: PCR Deliberation Commitee, January 01,2008, Name of reprentative: Youji Uchiyama, University of Tsukuba, Graduate School

Independent verification of the declaration and data, according to ISO14025 internal external Third party verifier:Toshifumi Nakai *

Programme operator: Japan Environmental Management Association for Industry, ecoleaf@jemai.or.jp

^{*} In the case of an business entity certified as an Ecoleaf-data-collection system, the names of certification auditors are written. The EcoLeaf is an environmental labeling program that belongs to the ISO-Type category.

PCR name

Product Environmental Information Data Sheet (PEIDS)

Document control no. F-02B-03 TOSHIBA TEC CORPORATION Product vendor EcoLeaf registration no. AD-14-E362

EP and IJ Printer

Unit Function DB version Characterization Factor DB version V2.1

TOSHIBA MFP e-STUDIO857

	PCR name		EP an	EP and IJ Prin		Product type		I OSHIDA WIFP	e-910010097	
		PCR ID	AD-04		Product weight (kg)	203.3	Package (kg)	31.1	Weight total (kg)	234.4
/		_	Life Cycle Stage		Produ	uction	1			
In/O	ut iter	ns	Life Cycle Stage	Unit	Raw material	Product	Distribution	Use	Disposition	Recycle effect
Eno	rav. (Consumption		MJ	1.21E+04	2.47E+03	2.52E+03	4.52E+04	4.60E+01	-1.15E+04
Ene	igy C	onsumption		Mcal	2.89E+03	5.90E+02	6.02E+02	1.08E+04	1.10E+01	-2.75E+03
			Coal	kg	1.65E+02	1.72E+01	5.88E-03	2.31E+02	6.35E-04	-1.85E+02
		Energy	Crude oil (for fuel)	kg	8.67E+01	1.96E+01	5.50E+01	3.56E+02	1.00E+00	-6.64E+01
		Lileigy	LNG	kg	1.80E+01	9.30E+00	8.49E-01	1.03E+02	1.58E-02	-1.03E+01
			Uranium ore	kg	1.56E-03	1.16E-03	3.99E-07	1.24E-02	4.29E-08	-2.65E-04
			Crude oil (for material)	kg	3.34E+01	0	0	1.84E+01	0	-4.59E+01
			Iron ore	kg	1.65E+02	0	0	3.88E+01	0	-2.05E+02
			Cu ore	kg	3.43E+00	0	0	0	0	-1.85E+00
	_		Al ore	kg	2.87E+00	0	0	3.94E+00	0	-6.27E+00
	otion	e s	Ni ore	kg	3.00E-01	0	0	8.38E-02	0	-3.83E-01
	d muc	Exhaustible resources Material	Cr ore	kg	4.61E-01	0	0	1.27E-01	0	-5.90E-01
	Sons		Mn ore	kg	8.96E-01	0	0	2.19E-01	0	-2.32E-01
	Resource Consumption from the environment		Pb ore	kg	1.79E-01	0	0	0	0	-1.50E-01
	sour m t		Sn ore	kg	0	0	0	0	0	0
	Res		Zn ore	kg	1.76E+00	0	0	0	0	-1.48E+00
			Au ore	kg	0	0	0	0	0	0
			Ag ore	kg	0	0	0	0	0	0
			silicasand	kg	5.16E+00	0	0	4.55E-01	0	-3.90E+00
es			NaCl	kg	2.03E+01	0	0	4.19E-01	1.29E-04	-1.86E+01
alys			limestone	kg	3.31E+01	0	0	7.64E+00	0	-3.52E+01
/an			soda ash	kg	3.01E-01	0	0	0	0	-2.37E-01
Inventory analyses		Renewable	wood	kg	4.33E+01	0	0	8.03E+01	0	-1.24E+02
IVe.		resources	water	kg	3.69E+04	1.34E+04	4.45E+00	2.03E+05	4.79E-01	-2.09E+04
-			CO2	kg	7.50E+02	1.34E+02	1.79E+02	1.94E+03	3.24E+00	-6.96E+02
			SOx	kg	4.47E-01	1.02E-01	1.07E-01	1.33E+00	3.98E-03	-4.43E-01
			NOx	kg	7.13E-01	8.14E-02	8.24E-01	1.63E+00	5.00E-02	-7.41E-01
			N2O	kg	4.71E-02	1.51E-03	3.04E-02	4.14E-02	6.01E-05	-4.50E-02
		to Atmosphere	CH4	kg	4.15E-03	3.10E-03	1.07E-06	3.43E-02	1.15E-07	-5.92E-04
			со	kg	1.17E-01	1.98E-02	2.09E-01	4.09E-01	1.98E-02	-1.34E-01
	rge		NMVOC	kg	8.11E-03	6.09E-03	2.09E-06	6.71E-02	2.25E-07	-1.16E-03
	cha		СхНу	kg	2.52E-02	3.31E-04	2.51E-02	3.92E-02	1.00E-03	-2.56E-02
	MDis Wiro		dust	kg	9.60E-02	4.39E-03	7.93E-02	1.57E-01	3.96E-03	-1.06E-01
	Emission/Discharge to the environment		BOD	kg	-	-	-	-	-	-
	mis to th		COD	kg	-	-	-	-	-	-
	, L	to Water system		kg	-	-	-	-	-	-
			P total	kg	-	-	-	-	-	-
			SS	kg	-	4.000	-	-	-	- 0.405.00
			Unspecified solid waste	kg	5.22E+00	1.35E-02	0	7.15E+00	5.77E+00	-6.42E+00
		to Soil system	Slag	kg	5.40E+01	0	0	1.18E+01	0	-6.39E+01
			Sludge	kg	5.00E+00	0	0	8.45E+00	0	-1.34E+01
			Low emission radioactvity waste	kg	1.10E-03	8.13E-04	2.79E-07	8.95E-03	3.00E-08	-1.85E-04
Ħ	Besou	Exhaustible	Energy resources(Crude oil equivalent)	kg	1.25E+03	0	0	1.29E+02	0	-1.11E+03
assessment	_	resources	Mineral resources(Iron ore equivalent)	kg	2.27E+02	5.13E+01	5.60E+01	7.30E+02	1.02E+00	-2.00E+02
sess	the		Global Warming(CO2 equivalent)	kg	7.62E+02	1.34E+02	1.87E+02	1.95E+03	3.26E+00	-7.08E+02
ass		to Atmosphere	Acidification(SO2 equivalent)	kg	9.46E-01	1.59E-01	6.84E-01	2.47E+00	3.90E-02	-9.62E-01
Impact	oy Ermiss scharge i	, i		kg	-	-	-	-	-	-
Ē	by Emissic	1		kg	-	-	-	-	-	-

[Notes for readers: EcoLeaf common rules]

to Water system

- I. Stage related
 A. "Production" stage is intended for two sub-stages listed below.
- (1) "Raw material" production: consists of mining, transportation and raw material production.
 (2) "Product" production: consists of the parts processing, assembly and installation.

 B. "Distribution" stage is intended for transportation of produced product. Transportation of consumables and maintenance goods (e.g. replacement parts) for use of the product are included into "Use" stage.
 C. "Use" stage is intended for use of the product (active mode, standby mode, etc.) and production, transportation to disposal/recycle of consumables/maintenance goods (e.g. replacement parts).
 D. "Disposition/Recycle" stage is intended for environmental impacts by product disposition/recycle, and deduction by recycling (e.g. impact reduction of raw material production).
- E. "Recycle Effect" illustrates an indirect environmental influences to other products/services by use of reclaimed materials/parts, and/or by supply of used products to other businesses for material reclaim/parts Case 1: Use of reclaimed materials/parts. Sum of increase of environmental impact by collection activities of used materials/parts, and decrease by volume reduction of used materials/parts.

 Case 2: Supply of used products to other businesses for material reclaim/parts reuse: Sum of increase of environmental impact by materials/parts reclaiming process, and decrease by volume reduction of new

- A. Data of mineral ore on "Exhaustible resources" are presented in weight of pure ingredients (e.g. iron, aluminum) in the ore.

 B. Data on energy resources are presented based on origin in calorific value. e.g. Data on uranium ore presents weight of uranium concentrate, which is available for use as an atomic fuel.
- C. Data of discharge to water system are in actual figure (not calculated using unit function in inventory analyses).
- ill impact analyses

 Result of the "impact analyses" is found in converting results of inventory analyses into total amount of a reference material (e.g. CO₂ in case of "Global Warming").
- A. Impact "by resource consumption" represents magnitude of impacts to resource depletion.
- B. Impact "by emission/discharge to environment" represents magnitude of impacts to Atmosphere, Water and Soil system.

- A. Exponential notation, after the decimal point to two, should be used.

 B. Indicate "0" instead exponential notation, if the result of calculation or estimation is considered as "zero" or negligible in comparison to related results.

 C. Indicate "-" if calculation nor estimation can not be done, in order to differentiate to indicate "zero".

 (BGD for material production are for production from mineral ore. Those data do not include reclaiming processes like recovery from scrap.)

[Notes for readers: Target product specific]

This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

Document control no.	F-03-03
Product vendor	TOSHIBA TEC CORPORATION
EcoLEaf registration no.	AD-14-E362

PCR name	EP and IJ Printer (PCR ID	EP and IJ Printer (PCR ID:AD-04)			TOSHIBA MFP e-STUDIO857			
LCA/LCIA in units of:	1 Unit	Product weight (kg)	203.3	Package (kg)	31.1	Weight total (kg)	234.4	

1. Product information (per unit): parts etc. by material and by process/assembly method

			otor by material and by proc						
	Breakdown of prima	ry materials			Math breakdown of parts, which need to apply Processing / Assembly Base Units (Parts B, C)				
	Material name	Weight (kg)	Material name	Weight (kg)	Process name	Weight (kg)	Process name	Weight (kg)	
	Ordinary steel	1.54E+02	Rubber	5.55E-01	Press molding:Iron	1.93E+02	Parts assembly	2.22E+00	
	Stainless steel	1.88E+00	Paper	2.03E+01	ess molding:Nonferrous me	9.25E-01			
+	Copper	6.13E+00	Assembled circuit board	2.61E+00	Injection molding	3.94E+01			
duct	Aluminum	2.20E+00	Medium sized motor	6.15E+00					
2	Glass	2.82E+00							
_	Thermoplastic Resin	3.81E+01							
	Subtotal	2.05E+02	Subtotal	2.96E+01					
	Total			2.34E+02	Subtotal	2.33E+02	Subtotal	2.22E+00	

Note

 $2.\ Production\ site\ information\ (per\ unit):\ Consumption\ and\ discharge/emission\ for\ production/processing/assembly\ within\ the\ site.$

SOx and NOx should be indicated in SO2, NO2 equivalent.

ion	Classification	Energy	Energy	Energy	Energy	Material	Material	Material	
npti.	Distribution	Electricity(kWh)	Heavy oil as fuel(kg)	Kerosene as fuel(kg)	Gasoline as fuel(kg)	Furnace urban gas(m3)	Industrial water(kg)	Clean water(kg)	
Insu	Quantity	3.81E+01	1.85E-02	1.40E-03	7.63E-02	8.84E-01	3.30E+02	6.13E+01	
ပိ	Note								
- e	Classification	To Water system							
mission/ ischarge	Distribution	Sewage(KG)							
mis	Quantity	4.03E+02							
E D	Note								

Note

3. Distribution stage information (per unit): means, distance, loading ratio, consumptions and emissions/discharges.

distribution	Means of transportation	Freight by ship	Diesel truck:10ton			
	Conditions	Load(kg·km)	Load(kg · km)			
	Quantity	2.81E+06	4.17E+05			
	Note					

Note

4. Use stage (per unit): use condition (mode, term) including active mode, standby mode and maintenance.

4.1 Product and accessories subject to this analysis

+	Classification	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	
gre	Distribution	Electricity(kWh)	Heavy oil as fuel(kg)	Diesel oil as fuel(kg)	Gasoline as fuel(kg)	Furnace urban gas(m3)	Industrial water(kg)	Clean water(kg)	
Product	Quantity	3.30E+03	3.39E-02	1.12E-02	8.43E+00	2.02E+03	2.34E+03	4.37E+00	
т.	Note								
+	Classification	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption		
duct	Distribution	Ordinary steel(kg)	Stainless steel(kg)	Aluminum(kg)	Thermoplastic Resin(kg)	Rubber(kg)	cardboard(kg)		
Proc	Quantity								
ш.	Note	3.72E+01	5.25E-01	3.72E+00	1.04E+02	3.08E+00	3.75E+01		
t	Classification	Processing	Processing	o Water systen	Distribution	Distribution			
roduct	Distribution	Press molding:Iron	Injection molding	Sewage(KG)	Freight by ship(Kg·km	Diesel truck:10ton(kg·km	1)		
Proc	Quantity	2.91E+01	1.34E+00	2.71E+03	7.42E+05	2.56E+05			
	Note								_

Note

4.2 Disposition/Recycle information on consumables and replacement parts

les	Classification	Treatment							
nab	Distribution	Shredding(kg)							
Consumables	Quantity	3.95E+00							
೦೦	Note								
es	Classification	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	
Consumables	Distribution	Recycle to Iron(kg)	Recycle to SUS(kg)	Recycle to Aluminum(kg)	Recycle to plastics(kg)	Recycle to cardboard(kg	Recycle to paper(kg)	Landfill:Industrial waste(kg)	
nsr	Quantity	3.72E+01	5.25E-01	3.72E+00	1.65E+01	3.46E+01	2.93E+00	3.95E+00	
S	Note								
Si	Classification	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction	Distribution	
nable	Distribution	Ordinary steel(kg)	Stainless steel(kg)	Aluminum(kg)	Thermoplastic Resin(kg)	cardboard(kg)	paper(kg)	Diesel truck:4ton (kg·km)	
Consumable	Quantity	-3.72E+01	-5.25E-01	-3.72E+00	-1.65E+01	-3.46E+01	-2.93E+00	9.62E+03	
Ö	Note								

Notes

5. Disposition/Recycle stage information (per product): process method and scenarios

0	Classification	Distribution	Treatment						
Scenario	Distribution	Diesel truck:10ton	Shredding(kg)						
cer	Quantity	4.17E+04	5.77E+00						
0)	Note								
	Classification	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment	Treatment
Scenario	Distribution	Recycle to Iron(kg)	Recycle to Copper(kg)	Recycle to Aluminum(kg)	Recycle to Glass(kg)	Recycle to plastics(kg)	Recycle to cardboard(kg	Recycle to paper(kg)	Landfill:Industrial waste(kg)
Sce	Quantity	1.62E+02	6.13E+00	2.20E+00	2.82E+00	3.50E+01	1.98E+01	4.94E-01	5.77E+00
0)	Note								
0	Classification	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction
nario	Distribution	Ordinary steel(kg)	Stainless steel(kg)	Copper(kg)	Aluminium(kg)	Glass(kg)	Thermoplastic Resin(kg)	cardboard(kg)	paper(kg)
Scer	Quantity	-1.60E+02	-1.88E+00	-6.13E+00	-2.20E+00	-2.82E+00	-3.50E+01	-1.98E+01	-4.94E-01
S	Note								

Notes

6. Others