

Notes

- 1. Original LCA data is available on PEIDS: Product Environmental Information Declaration Sheet, and Product Data Sheet.
- 2. Unified rules and requirements for EcoLeaf LCA, for intended product category, are available as a PCR: Product Category Rule. Visit EcoLeaf website under JEMAI homepage at http://www.ecoleaf-jemai.jp/eng/ for details.
- 3. Recycle Effect illustrates an indirect influence to other products/services.
- 4. Basic Units used for calculations are based on Japan domestic data at this time, due to a lack of base data to establish localized Basic Unit for overseas locations adequately.
- 5. This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

[Supplemental environmental information]

• Certified regulations: International Energy Star Program, EU RoHS.

• This product and its main components such as photoreceptor, toner, and carrier are produced in our factories certified to ISO14001 management system standard.

PCR review was conducted by: PCR Deliberation Committee, January 01, 2008, Name of representative: Youji Uchiyama, University of Tsukuba, Graduate School

Programme operator: Japan Environmental Management Association for Industry, ecoleaf@jemai.or.jp

* In the case of an business entity certified as an Ecoleaf-data-collection system, the names of certification auditors are written.

The EcoLeaf is an environmental labeling program that belongs to the ISO-Type II category.

Product Environmental Information Data Sheet (PEIDS)

Document control no.	F-02Bs-02
Product vendor	RICOH COMPANY, LTD.
EcoLeaf registration no.	AD-17-E915

Unit	Function	DB	version
------	----------	----	---------

Characterization Factor DB version

PCR name	EP and IJ print	er	Product type	MP 6055SP TE [Part # 417837]				
PCR code	AD-04	Product weight (kg)	77.0	Package (kg)	16.3	Weight total (kg)	93.3	

ses Impact by Resource Consumption	ems		Life Cycle :								
	:115	Out items				Raw material	uction Product	Distribution	Use	Disposition	Recycle Effect
ption	Energy Consumption							1.005.00	0.055.04	0.005.04	
ption				Insumption	MJ	5.95E+03	1.02E+03	1.03E+03	2.05E+04	2.88E+01	-5.17E+03
ption	-				Mcal	1.42E+03	2.44E+02	2.45E+02	4.89E+03	6.88E+00	-1.23E+03
ption			Energy resources		kg	4.90E+01	6.96E+00	2.40E-03	8.00E+01	1.30E-01	-4.42E+01
ption			ourc	Crude oil (for fuel)	kg	5.24E+01	8.01E+00	2.24E+01	1.89E+02	3.88E-01	-2.61E+01
ption			esc	LNG	kg	9.25E+00	3.76E+00	3.46E-01	4.78E+01	6.93E-02	-2.09E+00
ption	_	-		Uranium content of an ore	kg	8.34E-04	4.71E-04	1.62E-07	4.34E-03	8.79E-06	4.71E-05
bti	5			Crude oil (for material)	kg	2.73E+01	0	0	6.71E+01	0	-5.58E+01
	2	SO		Iron content of an ore	kg	4.07E+01	0	0	1.63E+01	0	-5.04E+01
L L	5	lice		Cu content of an ore	kg	9.75E-01	0	0	2.58E-01	0	-1.37E+00
us	2	JO L		Al content of an ore	kg	7.53E-01	0	0	9.95E-01	0	-1.66E+00
ပိ	3	es	es	Ni content of an ore	kg	1.98E-01	0	0	8.50E-03	0	-1.03E-03
e	ņ	ē	lic	Cr content of an ore	kg	2.82E-01	0	0	1.71E-02	0	-1.87E-02
ric		stibl		Mn content of an ore	kg	2.48E-01	0	0	8.77E-02	0	-4.38E-02
201	aust		res	Pb content of an ore	kg	8.41E-02	0	0	2.10E-02	0	-1.11E-01
See	Ű,	Exhaustible resources leral resources		Sn content of an ore	kg	1.67E-03	0	0	0	0	0
2	Exhaustible resources		Jer	Zn content of an ore	kg	8.59E-01	0	0	2.07E-01	0	-1.10E+00
t b	Mine E		dir	Au content of an ore	kg	1.29E-03	0	0	0	0	0
ac	N N		~	Ag content of an ore	kg	3.16E-04	0	0	0	0	0
np	idu l			Silica Sand	kg	2.30E+00	0	0	2.66E-01	0	-1.95E+00
Ir iys	-			Halite	kg	2.19E+01	2.69E-03	0	2.02E+00	3.81E-03	-5.32E-01
na				Limestone	kg	9.04E+00	0	0	3.43E+00	2.98E-01	-8.93E+00
< a	_	Renewable		Natural soda ash	kg	1.77E-01	0	0	1.24E-04	0	-1.43E-01
0				Wood	kg	2.37E+01	0	0	2.65E+01	-	0
La la				Water	kg	1.85E+04	5.73E+03	1.81E+00	8.14E+04	1.11E+02	-3.22E+03
Inventory anaiyses	Đ			CO2	kg	3.13E+02	5.53E+01	7.28E+01	8.77E+02	2.08E+01	-2.27E+02
- E			ē	Sox	kg	1.95E-01	4.13E-02	4.62E-02	5.65E-01	1.12E-02	-1.36E-01
iro	2		Че	Nox N2O	kg	3.73E-01	3.48E-02	3.77E-01	1.21E+00	3.08E-02	-2.31E-01
N N	2115		sp		kg	2.73E-02	1.57E-03	1.18E-02	7.32E-02	3.91E-05	-2.99E-02
e	D		Atmosphere	CH4 CO	kg	2.21E-03	1.26E-03	4.34E-07	1.16E-02	2.35E-05	1.59E-04
₽ P		i	Atr		kg	4.53E-02	8.13E-03	1.05E-01	2.03E-01	6.86E-03	1.21E-02
e to	2 D		0	NMVOC	kg	4.33E-03	2.47E-03	8.50E-07	2.27E-02	4.61E-05	3.10E-04
arge	a d			CxHy	kg	1.36E-02	2.86E-04	1.09E-02	3.34E-02	2.18E-04	-1.23E-02
cha	5			Dust	kg	4.52E-02	1.77E-03	3.54E-02	1.03E-01	1.68E-03	-4.25E-02
Inve Impact by Emission/Discharge to the environment	6	sterr.	o Water domain	BOD COD	kg	-	-	-	-	-	-
n/L		sys	lop.		kg	-	-	-	-	-	-
sic	SUL S	to Water system	ater	N total P total	kg kg	-	-	-	-	-	-
mis	Ë	N N	Ň	SS		-	-	-	-	-	-
Ш Х	<u> </u>	¥		SS Unspecified Solid Waste	kg kg	- 2.91E+00	- 1.45E-02	- 0	- 1.70E+01	- 6.31E+00	- -4.81E-01
t by	ŝ		system	Slag	kg	1.51E+00	0	0	5.61E+00	0.312+00	-4.61E-01
act	ac		il sy	Sludge	kg kg	1.62E+00	0	0	2.13E+00	0	-1.65E+01 -3.56E+00
d d	Ē		o Soil	Low level radio-active waste	ka	5.84E-04	3.29E-04	1.13E-07	3.03E-03	6.14E-06	3.30E-05
	_		4	Energy resources (crude oil							
nurce	ptior.	Exha	ustible	equivalent)	kg	1.02E+02	2.09E+01	2.28E+01	3.33E+02	6.27E-01	-5.66E+01
by Resource Consumption	unsu		urces	Mineral resources (Iron ore		4.055.00	0	0	4.405.00	0	4.005.00
assessment	S			equivalent)	kg	1.95E+03	0	0	1.42E+02	0	-4.98E+02
t as	ent			Global Warming (CO2	kg	3.20E+02	5.57E+01	7.59E+01	8.97E+02	2.08E+01	-2.35E+02
by Emission / Discharge to	tioning t	to Atm	osphere	equivalent) Acidification (SO2	9						
	envi			equivalent)	kg	4.56E-01	6.56E-02	3.10E-01	1.41E+00	3.28E-02	-2.98E-01

[Notes for readers: EcoLeaf common rules]

I. Stage related

A. "Production" stage is intended for two sub-stages listed below.

(1) "Raw material" production: consists of mining, transportation and raw material production.

(2) "Product" production: consists of the parts processing, assembly and installation.

B. "Distribution" stage is intended for transportation of produced product. Transportation of consumables and maintenance goods (e.g. replacement parts) for use of the product are included into "Use" stage.

C. "Use" stage is intended for use of the product (active mode, standby mode, etc.) and production, transportation to disposal/recycle of consumables/maintenance goods (e.g. replacement parts).

D. "Disposition/Recycle" stage is intended for environmental impacts by product disposition/recycle, and deduction by recycling (e.g. impact reduction of raw material production).

E. "Recycle Effect" illustrates an indirect environmental influences to other products/services by use of reclaimed materials/parts, and/or by supply of used products to other businesses for material reclaim/parts reuse. Case 1: Use of reclaimed materials/parts: Sum of increase of environmental impact by collection activities of used materials/parts, and decrease by volume reduction of used materials/parts. Case 2: Supply of used products to other businesses for material reclaim/parts reuse: Sum of increase of environmental impact by materials/parts reclaiming process, and decrease by volume reduction of new materials/parts production.

II. Inventory analyses

A. Data of mineral ore on "Exhaustible resources" are presented in weight of pure ingredients (e.g. iron, aluminum) in the ore.

B. Data on energy resources are presented based on origin in calorific value. e.g. Data on uranium ore presents weight of uranium concentrate, which is available for use as an atomic fuel.

C. Data of discharge to water system are in actual figure (not calculated using unit function in inventory analyses).

III Impact analyses

Result of the "Impact analyses" is found in converting results of inventory analyses into total amount of a reference material (e.g. CO2 in case of "Global Warming").

A. Impact "by resource consumption" represents magnitude of impacts to resource depletion.

B. Impact "by emission/discharge to environment" represents magnitude of impacts to Atmosphere, Water and Soil system.

IV Data entry format

A. Exponential notation, after the decimal point to two, should be used.

B. Indicate "O" instead exponential notation, if the result of calculation or estimation is considered as "zero" or negligible in comparison to related results.

C. Indicate " – " if calculation nor estimation can not be done, in order to differentiate to indicate "zero".

(BGD for material production are for production from mineral ore. Those data do not include reclaiming processes like recovery from scrap.)

[Notes for readers: Target product specific]

This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

Form 3(F-03s-02)

Product data sheet

(Input data and parameters for LCA)

	· · · · · · · · · · · · · · · · · · ·
Document control no.	F-03s-02
Product vendor	RICOH COMPANY, LTD.
EcoLEaf registration no.	AD-17-E915

7.72E+00

1.46E-02

2.13E+01

Total

Subtotal

7.60E+0

	PCR name	EP	and IJ print	er(PCR-ID:AD-04)	Product t	ype		М	P 6055SP	TE [Part # 417837 】	
LCA/	LCIA in units of:		1	product	Product weig	ıht (kg)	77.0	Packag	je (kg) 1	6.3	Weight total (kg)	93.3
1. Prod	uct information (p	er unit): pa	arts etc. by	material and by process/as	ssembly me	thod						
		Bre	akdown of p	rimary materials		Math bre	akdown of p	arts, which	need to apply	y Process	sing / Assembly Base Ur	nits (Parts B, C)
	Material na	ime	Weight (kg)	Material name	Weight (kg)	Pi	rocess nar	ne	Weight (kg) F	Process name	Weight (kg)
	Stainless s	teel	1.25E+00	Thermoplastic resin	3.08E+01	Pr	ess moldir Iron (kg)	ng:	3.98E+01	Par	ts assembly (kg)	7.60E+01
	Aluminur	n	7.12E-01	Thermosetting resin	9.98E-01		ess moldir	•	3.43E+00			
nct	Glass		1.73E+00	Electronic circuit board	1.28E+00	Inject	ion moldin	g (kg)	3.08E+01			
Produ	Rubber		2.22E-01	Ordinary steel	3.89E+01	Glas	ss molding	(kg)	1.95E+00			
ā	Other met	als	2.72E+00									
	Wood		6.90E+00									

7.20E+01 9.33E+01

Subtotal

7.60E+01

Note

2. Production site information (per unit): Consumption and discharge/emission for production/processing/assembly within the site.

Subtotal

SOx and NOx should be indicated in SO₂, NO₂ equivalent.

Paper Lubricant

Subtotal

ы	Classification	Energy	Energy	Energy	Material	Energy	Material	
onsumption	Distribution	Electricity (kWh)	Furnace urban gas (13A) (m ³)	Kerosene as fuel (kg)	Clean water (kg)	Furnace LNG (kg)	Industrial water (kg)	
Suo	Quantity	2.43E+01	3.47E-01	1.23E-01	1.03E+02	1.05E-02	3.41E+02	
Ũ	Note							
	Classification	Water system						
Emission/ Discharge	Distribution	Sewage processing (kg)						
Dis	Quantity	4.64E+02						
	Note							
Note								

3. Distribution stage information (per unit): means, distance, loading ratio, consumptions and emissions/discharges.

			, ,	,	, , ,		0		
<u>.</u>	Means of transportation	Diesel truck: 20 ton (kg·km)	Freight by ship (kg∙km)	Freight by ship (kg∙km)	Freight by ship (kg∙km)	Freight by ship (kg · km)			
stribut	Conditions	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)
Dis	Quantity	9.33E+01	1.28E+03	4.46E+01	2.67E+05	9.33E+01	1.16E+04	1.00E+02	1.08E+06
	Note								

Note

4. Use stage (per unit): use condition (mode, term) including active mode, standby mode and maintenance.

4.1 Product and accessories subject to this analysis

	Classification	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption
	Distribution	Stainless steel plate (kg)	Aluminum plate (kg)	Glass (kg)	Styrene- butadiene rubber (SBR) (kg)	Copper plate (kg)	Zinc (kg)	Corrugated cardboard (kg)	Lubricant (kg)
	Quantity	5.17E-02	9.40E-01	1.47E-03	6.07E-01	8.56E-01	6.57E-04	1.25E+01	1.58E-03
	Note								
	Classification	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Condition	Consumption
	Distribution	ABS (kg)	PA66 (Polyamide 66) (kg)	Polycarbonate (kg)	Polycarbonate- ABS (70/30) (kg)	High density polyethylene (kg)	Low density polyethylene (kg)	Diesel truck: 20 ton (kg·km)	PET (kg)
	Quantity	5.18E-01	4.16E-03	2.40E-01	1.44E+00	1.50E+01	1.00E+00	1.51E+05	6.07E+01
uct	Note								
Product	Classification	Consumption	Consumption	Consumption	Consumption	Condition	Consumption	Consumption	Consumption
ā	Distribution	POM (polyacetal) (kg)	Polypropylene (kg)	Polystyrene (kg)	Epoxy resin (EP) (kg)	Freight by ship (kg · km)	Expandable hard polyurethane (Hard) (kg)	Expandable soft polyurethane (for automobile)	Unsaturated polyester (UP) (kg)
	Quantity								(UP) (Kg)
	Quantity	1.88E+00	7.68E-02	7.20E+00	1.53E-02	8.48E+05	2.56E-02	2.57E-02	1.12E-01
	Note	1.88E+00	7.68E-02	7.20E+00	1.53E-02	8.48E+05			
	,	1.88E+00 Consumption	7.68E-02 Consumption	7.20E+00 Consumption	1.53E-02 Condition	8.48E+05 Consumption			
	Note						2.56E-02	2.57E-02	1.12E-01
	Note Classification	Consumption Electroplated	Consumption Cold-Rolled steel	Consumption Press molding:	Condition Diesel truck:	Consumption Press molding: Nonferrous metal	2.56E-02 Consumption	2.57E-02 Consumption Glass molding	1.12E-01 Consumption Parts assembly

	Classification	Condition	Energy	Energy	Energy	Material	Energy	Material	Condition
	Distribution	Freight by ship (kg · km)	Electricity (kWh)	Furnace urban gas (13A) (m ³)	Kerosene as fuel (kg)	Clean water (kg)	Furnace LNG (kg)	Industrial water (kg)	Diesel truck: 20 ton (kg·km)
÷	Quantity	4.75E+04	3.84E+02	4.51E+00	1.60E+00	1.62E+02	6.07E-01	6.72E+01	8.56E+04
quo	Note								
Product	Classification	Water system	Consumption	Consumption	Condition				
	Distribution	Sewage processing (kg)	Electricity (kWh)	Gasoline as fuel (kg)	Freight by ship (kg∙km)				
	Quantity	4.90E+02	6.27E+02	9.53E+00	4.82E+05				
	Note								

Note

4.2 Disposition/Recycle information on consumables and replacement parts

Classification	Process	Process	Process	Process	Process	Process	Process	Process
Distribution	Landfill: Industrial waste (kg)	Incineration to landfill (as ash) (kg)	Diesel truck: 4 ton (kg∙km)	Shredding (kg)	Sorting: Iron (by magnetic force) (kg)	Sorting: Nonferrous metal (by eddy current with wind force) (kg)	Sorting: Plastics (by relative density difference in water) (kg)	Recycle: to Glass (kg)
Quantity	1.26E+01	1.25E+01	1.21E+03	5.18E+01	5.18E+01	4.06E+01	3.88E+01	1.47E-03
Note								
Classification	Process	Process	Process	Process	Deduction	Deduction	Deduction	Deduction
Distribution	Recycle: to cold-rolled steel (kg)	Recycle: to Aluminum plate (kg)	Recycle: to copper plate (kg)	Recycle: to Thermoplastic pellet (kg)	Glass (kg)	Cold-Rolled steel plate (kg)	Aluminum plate (kg)	Copper plate (kg)
Quantity	1.12E+01	9.03E-01	8.23E-01	2.63E+01	1.45E-03	1.12E+01	9.03E-01	8.23E-01
Note								
Classification	Deduction	Process						
Distribution	Polystyrene (kg)	Diesel truck: 10 ton (kg⋅km)						
Quantity	2.63E+01	4.14E+04						
Note								
	Distribution Quantity Note Classification Distribution Quantity Note Classification Distribution Quantity	DistributionLandfill: Industrial waste (kg)Quantity1.26E+01NoteClassificationProcessDistributionRecycle: to cold-rolled steel (kg)Quantity1.12E+01NoteClassificationDeductionDistributionPolystyrene (kg)Quantity2.63E+01	DistributionLandfill: Industrial waste (kg)Incineration to Iandfill (as ash) (kg)Quantity1.26E+011.25E+01Note77ClassificationProcessProcessDistributionRecycle: to cold-rolled steel (kg)Recycle: to Aluminum plate (kg)Quantity1.12E+019.03E-01Note77QuantityDeductionProcessDistributionDeductionProcessDistribution2.63E+014.14E+04	DistributionLandfill: Industrial waste (kg)Incineration to Iandfill (as ash) (kg)Diesel truck: 4 ton (kg·km)Quantity1.26E+011.25E+011.21E+03Note111ClassificationProcessProcessDistributionRecycle: to cold-rolled steel (kg)Recycle: to Aluminum plate (kg)Recycle: to copper plate (kg)Quantity1.12E+019.03E-018.23E-01Note1Seel truck: (kg)Seel truck: to copper plate (kg)QuantityDeductionProcessDistributionDeductionProcessDistributionPolystyrene (kg)Diesel truck: 10 ton (kg·km)Quantity2.63E+014.14E+04	DistributionLandfill: Industrial waste (kg)Incineration to Iandfill (as ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Quantity1.26E+011.25E+011.21E+035.18E+01Note </td <td>DistributionLandfill: Industrial waste (kg)Incineration to Iandfill (as ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Sorting: Iron (by magnetic force) (kg)Quantity1.26E+011.25E+011.21E+035.18E+015.18E+01NoteClassificationProcessProcessProcessProcessDistributionRecycle: (kg)Recycle: to cold-rolled steel (kg)Recycle: to Aluminum plate (kg)Recycle: to copper plate (kg)Recycle: to Thermoplastic pellet (kg)Glass (kg)Quantity1.12E+019.03E-018.23E-012.63E+011.45E-03NoteClassificationDeductionProcessDistributionDeductionProcessIncinerationQuantity1.12E+019.03E-018.23E-012.63E+011.45E-03NoteClassificationDeductionProcessDistributionPolystyrene (kg)Diesel truck: 10 ton (kg·km)Quantity2.63E+014.14E+04</td> <td>DistributionLandfill: Industrial waste (kg)Incineration to Iandfill (as ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Sorting: Iron (by magnetic force) (kg)Sorting: Iron (by magnetic to pagnetic to pagneticSorting: Iron (by magnetic by eddy current with wind force) (kg)Quantity1.26E+011.25E+011.21E+035.18E+015.18E+014.06E+01Note<!--</td--><td>DistributionLandfill: Industrial waste (kg)Incineration to landfill (a ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Sorting: uron (by magnetic force) (kg)Sorting: Nonferrous metal (by eddy current with wind force) (kg)Sorting: Plastics (by relative density difference in water) (kg)Quantity1.26E+011.25E+011.21E+035.18E+015.18E+014.06E+013.88E+01Note<!--</td--></td></td>	DistributionLandfill: Industrial waste (kg)Incineration to Iandfill (as ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Sorting: Iron (by magnetic force) (kg)Quantity1.26E+011.25E+011.21E+035.18E+015.18E+01NoteClassificationProcessProcessProcessProcessDistributionRecycle: (kg)Recycle: to cold-rolled steel (kg)Recycle: to Aluminum plate (kg)Recycle: to copper plate (kg)Recycle: to Thermoplastic pellet (kg)Glass (kg)Quantity1.12E+019.03E-018.23E-012.63E+011.45E-03NoteClassificationDeductionProcessDistributionDeductionProcessIncinerationQuantity1.12E+019.03E-018.23E-012.63E+011.45E-03NoteClassificationDeductionProcessDistributionPolystyrene (kg)Diesel truck: 10 ton (kg·km)Quantity2.63E+014.14E+04	DistributionLandfill: Industrial waste (kg)Incineration to Iandfill (as ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Sorting: Iron (by magnetic force) (kg)Sorting: Iron (by magnetic to pagnetic to pagneticSorting: Iron (by magnetic by eddy current with wind force) (kg)Quantity1.26E+011.25E+011.21E+035.18E+015.18E+014.06E+01Note </td <td>DistributionLandfill: Industrial waste (kg)Incineration to landfill (a ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Sorting: uron (by magnetic force) (kg)Sorting: Nonferrous metal (by eddy current with wind force) (kg)Sorting: Plastics (by relative density difference in water) (kg)Quantity1.26E+011.25E+011.21E+035.18E+015.18E+014.06E+013.88E+01Note<!--</td--></td>	DistributionLandfill: Industrial waste (kg)Incineration to landfill (a ash) (kg)Diesel truck: 4 ton (kg·km)Shredding (kg)Sorting: uron (by magnetic force) (kg)Sorting: Nonferrous metal (by eddy current with wind force) (kg)Sorting: Plastics (by relative density difference in water) (kg)Quantity1.26E+011.25E+011.21E+035.18E+015.18E+014.06E+013.88E+01Note </td

Note

5. Disposition/Recycle stage information (per product): process method and scenarios

	Classification	Process	Process	Process	Process	Process	Process	Deduction	Process
	Distribution	Landfill: Industrial waste (kg)	Shredding (kg)	Incineration: Industrial waste (kg)	Incineration to landfill (as ash) (kg)	Diesel truck: 10 ton (kg · km)	Diesel truck: 4 ton (kg∙km)	High density polyethylene (kg)	Sorting: Iron (by magnetic force) (kg)
	Quantity	4.40E+00	8.69E+01	2.18E+00	1.24E+01	6.95E+04	5.28E+02	7.50E-01	7.53E+01
	Note								
	Classification	Process	Process	Process	Process	Process	Process	Process	Deduction
Scenario	Distribution	Sorting: Nonferrous metal (by eddy current with wind force) (kg)	Sorting: Plastics (by relative density difference in water) (kg)	Recycle: to Glass (kg)	Recycle: to cold-rolled steel (kg)	Recycle: to Aluminum plate (kg)	Recycle: to copper plate (kg)	Recycle: to Thermoplastic pellet (kg)	Glass (kg)
	Quantity	3.78E+01	3.46E+01	1.73E+00	3.75E+01	6.65E-01	3.73E+00	2.98E+01	1.70E+00
	Note								
	Classification	Deduction	Deduction	Deduction	Deduction				
	Distribution	Cold-Rolled steel plate (kg)	Aluminum plate (kg)	Copper plate (kg)	Polystyrene (kg)				
	Quantity	3.75E+01	6.65E-01	3.73E+00	2.91E+01				
	Note								
Note									

6. Others

This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.