Product Environmental Aspects Declaration

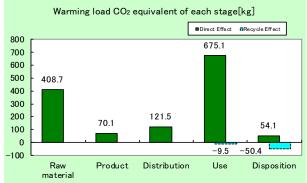
EP and IJ printer (PCR-ID:AD-04)

No. AD-18-E1071-A Date of publication : Sep./27/2018 Date of modification : Dec./25/2019

TOSHIBA

TOSHIBA TEC CORPORATION
Corporate Quality & Environmental Group
TEL: +81-3-6830-9100

URL http://www.toshibatec.co.jp



E-STUDIO 3515AC

- 1. Printing Process: Electrophotography (EP)
- 2. Color: Color and Monochrome(B/W)
- 3. Printing Speed: 35 Letter pages per minute (Color and B/W)
- 4. Maximum Paper Size: Ledger Size
- 5. Duplex copying : Standard

Consumption and discharge in a life cycle	All the stage sum totals
Global Warming (CO ₂ equivalent)	1329.5kg
Global Warming (CO2 equivalent)	(1269.6kg)
Acidification (SO ₂ equivalent)	2.79kg
7 telumeation (50% equivalent)	(2.70kg)
Energy resources (crude oil equivalent)	24,136MJ
Effergy resources (crude off equivalent)	(22,998MJ)

*Figures in () indicated environmental impact including recycle effect *note3

The above environmental load is calculated assuming that the usage period is 5 years and the total number of printed sheets is 735,000 pages. Also, the printing paper is not included in the calculation range. Outside the red frame of the photo is not included in the LCA calculation because it is the accessories (document feeder and paper feed unit).

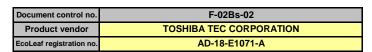
Notes

- 1. Original LCA data is available on PEIDS: Product Environmental Information Declaration Sheet, and Product Data Sheet.
- 2. Unified rules and requirements for EcoLeaf LCA, for intended product category, are available as a PCR: Product Category Rule. Visit EcoLeaf website under homepage at http://www.ecoleaf-jemai.jp/eng/pcr.html
- ${\it 3. \,\, Recycle \,\, Effect \,\, illustrates \,\, an \,\, indirect \,\, influence \,\, to \,\, other \,\, products/services.}$
- 4. Basic Units used for calculations are based on Japan domestic data at this time, due to a lack of base data to establish localized Basic Unit for overseas locations adequately.
- 5. This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

[Supplemental environmental information]

- •Certified to the international ENERGY STAR Program V2.0, EU RoHS
- Manufactured at ISO14001 certified factories

PCR review was conducted by: PCR Deliberation Committee, January 01,2008, Name of representative: Youji Uchiyama, University of Tsukuba, Graduate School


Independent verification of the declaration and data, according to ISO14025:2006 □internal ■external Third party verifier: Hiromi Horikawa

Programme operator: Sustainable Management Promotion Organization ecoleaf@sumpo.or.jp

The Ecoleaf is an environmental labeling program that belongs to the ISO-TypeIII category.

^{*} In the case of an business entity certified as an Ecoleaf-data-collection system, the names of certification auditors are written.

Product Environmental Information Data Sheet (PEIDS)

PCR name	EP and IJ printer		Product type	TOSHIBA MFP e-STUDIO3515AC				
PCR code	AD-04	Product weight (kg)	77.5	Package (kg)	15	Weight total (kg)	92.5	

	Life Cycle Sta		Life Cycle Stage		Produ	uction				Recycle
In/O	ut iter	ns		Unit	Raw material	Product	Distribution	Use	Disposition	Effect
	ut ito.			MJ	7.20E+03	1,21E+03	1.66E+03	1.40E+04	1.05E+02	-1.14E+03
		Energ	y Consumption							
	_		01	Mcal	1.72E+03	2.89E+02	3.96E+02	3.33E+03	2.50E+01	-2.72E+02
		Energy	g Coal	kg	5.63E+01	7.05E+00	3.87E-03	5.90E+01	3.96E-01	-1.31E+01
		jerg	Crude oil (for fuel)	kg	6.92E+01	1.24E+01	3.62E+01	1.25E+02	1.55E+00	-7.37E+00
		ᇤ	S LNG	kg	1.33E+01	3.59E+00	5.59E-01	3.21E+01	2.17E-01	-5.98E-01
			Oranium content of an ore	kg	1.34E-03	4.77E-04	2.63E-07	3.58E-03	2.68E-05	-9.71E-07
			Crude oil (for material)	kg	2.50E+01	0	0	3.49E+01	0	-8.06E+00
	o	S	Iron content of an ore	kg	4.17E+01	0	0	4.66E+00	0	-1.44E+01
	pti	2	Cu content of an ore	kg	1.74E+00	0	0	1.46E-02	0	-2.34E-01
	ΙĘ	no	Al content of an ore	kg	9.09E-01	0	0	9.77E-01	0	-6.20E-01
	JSC	es es	Ni content of an ore	kg	2.45E-01	0	0	5.50E-03	0	-2.93E-04
	١ō	9 Z	C content of an ore	kg	3.44E-01	0	0	9.05E-03	0	-5.35E-03
	0		Mn content of an ore	kg	2.44E-01	0	0	2.56E-02	0	-5.40E-03
	2	ust	Pb content of an ore	kg	9.40E-02	0	0	1.19E-03	0	-1.90E-02
	1 9	a E	Sn content of an ore	kg	0	0	0	0	0	0
	Ses	Exhaustible resources	Zn content of an ore	kg	9.25E-01	0	0	1.17E-02	0	-1.87E-01
	- LE	Exhaustible res	Au content of an ore	kg	0	0	0	0	0	0
	Ď,	-	Ag content of an ore	kg	0	0	0	0	0	0
	Impact by Resource Consumption		Silica Sand	kg	3.47E+00	0	0	8.25E-02	0	-8.30E-01
S	ngu		Halite	kg	1.44E+01	9.57E-05	0	1.65E-01	3.43E-02	-2.42E+00
se	=		Limestone	kg	9.55E+00	0	0	2.38E+00	9.21E-01	-2.60E+00
aj.			Natural soda ash	kg	3.07E-01	0	0	2.63E-03	0	-7.80E-02
ry an		Renewable	Wood	kg	2.41E+01	0	0	5.80E+01	0	0
Inventory anaiyses		Rene	Water	kg	3.21E+04	5.35E+03	2.91E+00	6.10E+04	3.33E+02	-1.29E+03
			CO ₂	kg	3.99E+02	6.91E+01	1.18E+02	6.67E+02	5.41E+01	-5.83E+01
		σ.	Sox	kg	2.56E-01	4.90E-02	9.21E-02	4.73E-01	3.17E-02	-4.20E-02
		ere	Nox	kg	4.72E-01	7.86E-02	9.15E-01	1.13E+00	1.04E-01	-7.76E-02
	Ιt	to Atmosphere	N ₂ O	kg	3.39E-02	3.45E-03	1.48E-02	3.11E-02	1.54E-04	-6.05E-03
	e	SO	CH4	kg	3.57E-03	1.27E-03	7.02E-07	9.55E-03	7.17E-05	8.86E-06
	Ja ja	ŧ	CO	kg	5.51E-02	1.59E-02	3.07E-01	2.79E-01	2.64E-02	-1.11E-02
	Sic	▼ 0	NMVOC	kg	6.98E-03	2.50E-03	1.37E-06	1.87E-02	1.40E-04	1.70E-05
	Emission/ e environ	₽	CxHy	kg	1.63E-03	1.82E-03	2.23E-02	2.26E-02	1.01E-03	-3.16E-03
	E		Dust	kg	5.33E-02	6.58E-03	7.90E-02	8.51E-02	5.91E-03	-1.16E-02
	mpact by		POD	kg	J.JJL-02 -	-	7.90L-02 -	- -	- -	-1.10L-02
	F 5	e u	.≦ COD	kg	-	-	-	-	-	-
	pa	/at /at	N total	kg	-	-	-	-	-	-
	m lar	to Water system to Atmosph	P total	kg	-	-	-	-	-	-
	SCI	5 0 5	SS	kg		_	_	-	_	-
		_	Unspecified Solid Waste	kg	3.20E+00	2.72E-04	0	9.50E+00	3.61E+01	-6.19E-01
		lio me	Slag	kg	1.49E+01	0	0	1.45E+00	0	-4.57E+00
		to Soil system	Sludge	kg	1.40E+00	0	0	2.10E+00	0	-1.33E+00
		Sy t	Low level radio-active waste	kg	9.38E-04	3.33E-04	1.84E-07	2.50E-03	1.87E-05	-7.16E-07
	ource		Energy resources (crude oil equivalent)	kg	1.32E+02	2.51E+01	3.69E+01	2.31E+02	2.28E+00	-1.65E+01
ent	Emission / by Resource scharge to Consumption	Exhaustible resources	Mineral resources (Iron ore equivalent)	kg	6.68E+02	0	0	3.54E+01	0	-9.10E+01
Impact	on /	ıere	Global Warming (CO ₂ equivalent)	kg	4.09E+02	7.01E+01	1.22E+02	6.75E+02	5.41E+01	-5.99E+01
o o	by Emission / Discharge to	to Atmosphere	Acidification (SO ₂ equivalent)	kg	5.87E-01	1.04E-01	7.33E-01	1.27E+00	1.04E-01	-9.63E-02
	J.S.	₹	_	-	-	-	-	-	-	-
	و م		-	-	-	-	-	-	-	-
Moto		adore: Fool o	=	-	-	-	-	-	-	-

[Notes for readers: EcoLeaf common rules]

I. Stage related

- A. "Production" stage is intended for two sub-stages listed below.
- (1) "Raw material" production: consists of mining, transportation and raw material production.
- (2) "Product" production: consists of the parts processing, assembly and installation.
- B. "Distribution" stage is intended for transportation of produced product. Transportation of consumables and maintenance goods (e.g. replacement parts) for use of the product are included into "Use" stage.
- C. Use" stage is intended for use of the product (active mode, standby mode, etc.) and production, transportation to disposal/recycle of consumables/maintenance goods (e.g. replacement parts).
- D. "Disposition/Recycle" stage is intended for environmental impacts by product disposition/recycle, and deduction by recycling (e.g. impact reduction of raw material production)
- E. "Recycle Effect" illustrates an indirect environmental influences to other products/services by use of reclaimed materials/parts, and/or by supply of used products to other businesses for material reclaim/parts reuse The content of the co

II. Inventory analyses

- A. Data of mineral ore on "Exhaustible resources" are presented in weight of pure ingredients (e.g. iron, aluminum) in the ore.
- B. Data on energy resources are presented based on origin in calorific value, e.g. Data on uranium ore presents weight of uranium concentrate, which is available for use as an atomic fuel.
- C. Data of discharge to water system are in actual figure (not calculated using unit function in inventory analyses).

- Result of the "Impact analyses" is found in converting results of inventory analyses into total amount of a reference material (e.g. CO2 in case of "Global Warming").
- A. Impact "by resource consumption" represents magnitude of impacts to resource depletion.
- B. Impact "by emission/discharge to environment" represents magnitude of impacts to Atmosphere, Water and Soil system.

- A. Exponential notation, after the decimal point to two, should be used.
- B. Indicate "0" instead exponential notation, if the result of calculation or estimation is considered as "zero" or negligible in comparison to related results.

 C. Indicate " " if calculation nor estimation can not be done, in order to differentiate to indicate "zero".
- - (BGD for material production are for production from mineral ore. Those data do not include reclaiming processes like recovery from scrap.)

Product data sheet

(Input data and parameters for LCA)

	(input data and parameters for Eert)
Document control no.	F-03s-02
Product vendor	TOSHIBA TEC CORPORATION
EcoLEaf registration no.	AD-18-E1071-A

PCR name	EP and IJ printer (PCR-ID:AD-04)	Product type	TOSHIBA MFP e-STUDIO3515AC				
LCA/LCIA in units of:	1	Product weight (kg)	77.5	Package (kg)	15	Weight total (kg)	92.5

1. Product information (per unit): parts etc. by material and by process/assembly method

	Bre	eakdown of pr	imary materials		Math breakdown of parts, whi	ch need to apply	Processing / Assembly Base U	Math breakdown of parts, which need to apply Processing / Assembly Base Units (Parts B, C)				
	Material name	Weight (kg)	Material name	Weight (kg)	Process name	Weight (kg)	Process name	Weight (kg)				
	Ordinary steel	3.67E+01	Paper	8.73E+00	Press molding:Iron (kg)	3.72E+01	Parts assembly (kg)	1.04E+00				
	Stainless steel	1.54E+00	Wood	5.46E+00	Press molding: Nonferrous metal (kg)	1.68E+01						
duct	Other metals 2.27E+00		Semiconductor substrate	3.44E+00	Injection molding (kg)	2.82E+01						
ᄝ	Aluminum	6.17E-01	Medium-sized motor	2.91E+00	Glass molding (kg)	2.64E+00						
Pro	Glass	2.64E+00										
	Thermoplastic resin	2.75E+01										
	Thermosetting resin	4.27E-01										
	Rubber	2.60E-01										
	Subtotal	7.20E+01	Subtotal	2.05E+01								
		Total		9.25E+01	Subtotal	8.49E+01	Subtotal	1.04E+00				

Note

2. Production site information (per unit): Consumption and discharge/emission for production/processing/assembly within the site.

SOx and NOx should be indicated in SO₂, NO₂ equivalent.

	Classification	Energy	Energy	Energy	Material	Energy	Material	Material	Material
ion	Distribution	Electricity (kWh)	Diesel oil as fuel (kg)	Heavy oil as fuel (kg)	Diesel truck: 10 ton (kg·km)	Furnace LPG (kg)	Industrial water (kg)	Clean water (kg)	Steam (kg)
	Quantity	2.27E+01	1.05E-02	3.40E-02	1.40E+04	1.92E-01	3.20E-02	1.65E+01	2.35E-04
ᇤ	Note								
Consumption	Classification	Material	Material	Material					
Cor	Distribution	Nitrogen (kg)	Diesel truck: 4 ton (kg·km)	Freight by ship (kg·km)					
	Quantity	4.11E-03	2.33E+02	2.41E+05					
	Note								
rge	Classification	Water system							
Emission/Discharge	Distribution	Sewage processing (kg)							
ssion	Quantity	1.65E+01							
Emis	Note								

Note: The impact of transportation from China to Indonesia is also included.

3. Distribution stage information (per unit): means, distance, loading ratio, consumptions and emissions/discharges.

Means of transportation	Diesel truck: 10 ton (kg·km)	Diesel truck: 10 ton (kg·km)	Diesel truck: 10 ton (kg·km)	Diesel truck: 10 ton (kg·km)	Freight by ship (kg·km)	Freight by ship (kg·km)	Freight by ship (kg·km)	Freight by ship (kg·km)
Conditions	Mass(kg)	Distance (km)	, ,	, ,	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)
Quantity	9.25E+01	1.30E+01	4.81E+01	2.50E+03	9.25E+01	1.41E+04	1.00E+02	1.31E+06
Note								
Means of transportation	Diesel truck: 10 ton (kg·km)	Diesel truck: 10 ton (kg·km)	Diesel truck: 10 ton (kg·km)	Diesel truck: 10 ton (kg·km)				
Conditions	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)				
Quantity	9.25E+01	3.30E+03	4.81E+01	6.35E+05				
Note								
	transportation Conditions Quantity Note Means of transportation Conditions Quantity	transportation 10 ton (kg·km) Conditions Mass(kg) Quantity 9.25E+01 Note Means of transportation Conditions Mass(kg) Quantity 9.25E+01 Diesel truck: 10 ton (kg·km) Conditions Mass(kg) Quantity 9.25E+01	transportation 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Quantity 9.25E+01 1.30E+01 Note Diesel truck: Diesel truck: Means of transportation 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Quantity 9.25E+01 3.30E+03	transportation 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Quantity 9.25E+01 1.30E+01 4.81E+01 Note Diesel truck: Diesel truck: Diesel truck: 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Quantity 9.25E+01 3.30E+03 4.81E+01	transportation 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Quantity 9.25E+01 1.30E+01 4.81E+01 2.50E+03 Note Diesel truck: Diesel truck: Diesel truck: 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Quantity 9.25E+01 3.30E+03 4.81E+01 6.35E+05	transportation 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Mass(kg) Quantity 9.25E+01 1.30E+01 4.81E+01 2.50E+03 9.25E+01 Note Diesel truck: Diesel truck: Diesel truck: 10 ton (kg·km) Diesel truck: 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) Load(kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Quantity 9.25E+01 3.30E+03 4.81E+01 6.35E+05	transportation 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) (kg·km) (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Mass(kg) Distance (km) Quantity 9.25E+01 1.30E+01 4.81E+01 2.50E+03 9.25E+01 1.41E+04 Note Diesel truck: Diesel truck: Diesel truck: 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Quantity 9.25E+01 3.30E+03 4.81E+01 6.35E+05	transportation 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) (kg·km) (kg·km) (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Mass(kg) Distance (km) Loading Ratio(%w) Quantity 9.25E+01 1.30E+01 4.81E+01 2.50E+03 9.25E+01 1.41E+04 1.00E+02 Note Diesel truck: Diesel truck: Diesel truck: 10 ton (kg·km) Diesel truck: 10 ton (kg·km) Diesel truck: 10 ton (kg·km) 10 ton (kg·km) 10 ton (kg·km) Conditions Mass(kg) Distance (km) Loading Ratio(%w) Load(kg·km) Load(kg·km) Load(kg·km) Load(kg·km) Load(kg·km) Image: Conditions of the con

Note $\,:$ The main body product is assumed to be transported from Indonesia to USA .

4. Use stage (per unit): use condition (mode, term) including active mode, standby mode and maintenance.

4.1 Product and accessories subject to this analysis

	Classification	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption
	Distribution	Cold-Rolled steel plate (kg)	Electroplated steel Plate (kg)	Stainless steel plate (kg)	Aluminum plate (kg)	High density polyethylene (kg)	Low density polyethylene (kg)	Polystyrene (kg)	POM (polyacetal) (kg)
	Quantity	1.47E+00	3.02E+00	3.42E-02	9.24E-01	6.15E+00	1.57E-01	8.37E+00	3.17E-01
	Note								
	Classification	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption
	Distribution	PA66 (Polyamide 66) (kg)	PET (kg)	Phenol resin (PF) (kg)	Corrugated cardboard (kg)	Assembled circuit board (kg)	Press molding: Iron (kg)	Press molding: Nonferrous metal (kg)	Injection molding (kg)
nct	Quantity	5.80E-02	3.03E+01	1.30E-02	2.72E+01	1.06E-01	3.05E+00	2.72E+01	1.51E+01
Product	Note								
_	Classification	Process	Process	Consumption	Consumption	Consumption	Consumption	Consumption	Discharge
	Distribution	Diesel truck: 4 ton (kg·km)	Freight by ship (kg·km)	Electricity (kWh)	Heavy oil as fuel (kg)	Furnace LPG (kg)	Industrial water (kg)	Clean water (kg)	Sewage processing (kg)
	Quantity	3.00E+05	2.99E+05	8.19E+02	4.07E-03	2.46E-01	3.78E-03	6.28E+02	1.80E+02
	Note								
	Classification	Consumption	Consumption						
	Distribution	Steam (kg)	Nitrogen (kg)						
	Quantity	7.03E-04	1.23E-02						
	Note								

Note: The periodical replacement parts are assumed to be transported from China to USA.

4.2 Disposition/Recycle information on consumables and replacement parts

	Classification	Process	Process	Process	Process	Process	Process	Process	Process
les	Distribution	Shredding (kg)	Landfill: Industrial waste (kg)	Incineration: Industrial waste (kg)	Incineration to landfill (as ash) (kg)	Landfill: General waste (kg)	Sorting: Iron (by magnetic force) (kg)	Sorting: Nonferrous metal (by eddy current with wind force) (kg)	Sorting: Plastics (by relative density difference in water) (kg)
ab	Quantity	5.08E+01	5.17E-01	1.67E+01	2.73E+01	3.27E+00	9.37E+00	7.65E+00	7.30E+00
sum	Note								
Consumables	Classification	Process	Process	Process	Deduction	Deduction	Deduction		
	Distribution	Recycle: to cold-rolled steel (kg)	Recycle: to Aluminum plate (kg)	Recycle: to Thermoplastic pellet (kg)	Cold-Rolled steel plate (kg)	Aluminum plate (kg)	Polystyrene (kg)		
	Quantity	1.63E+00	3.51E-01	5.38E+00	1.47E+00	3.51E-01	1.22E+00		
	Note								

Note: The values in the above table are calculated based on actual results in Japan.

5. Disposition/Recycle stage information (per product): process method and scenarios

J. DISPO	osition/Recy	cie stage inform	iation (per produ	ct): process met	nod and scenario	JS			
	Classification	Process	Process	Process	Process	Process	Process	Process	Process
	Distribution	Landfill: Industrial waste (kg)	Incineration: Industrial waste (kg)	Incineration: Biomass (paper) (kg)	Shredding (kg)	Incineration to landfill (as ash) (kg)	Landfill: General waste (kg)	Diesel truck: 10 ton (kg·km)	Diesel truck: 4 ton (kg·km)
	Quantity	3.84E+00	8.39E+00	2.18E+00	8.95E+01	2.75E+01	2.80E+01	3.29E+04	5.37E+03
	Note								
	Classification	Process	Process	Process	Process	Process	Process	Process	Process
Scenario	Distribution	Sorting: Iron (by magnetic force) (kg)	Sorting: Nonferrous metal (by eddy current with wind force) (kg)	Sorting: Plastics (by relative density difference in water) (kg)	Recycle: to cold-rolled steel (kg)	Recycle: to copper plate (kg)	Recycle: to Aluminum plate (kg)	Recycle: to Glass (kg)	Recycle: to Thermoplastic pellet (kg)
	Quantity	2.94E+01	1.49E+01	1.38E+01	1.38E+01	7.75E-01	2.35E-01	9.30E-01	9.83E+00
	Note								
	Classification	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction	
	Distribution	Cold-Rolled steel plate (kg)	Copper plate (kg)	Aluminum plate (kg)	Polystyrene (kg)	Polycarbonate- ABS (70/30) (kg)	ABS (kg)	Glass (kg)	
	Quantity	1.24E+01	7.75E-01	2.35E-01	2.23E+00	2.20E+00	2.98E+00	9.30E-01	
	Note								

Note : The values in the above table are calculated based on actual results in Japan.

6. Others

This Product is transported directly from China to USA too.