

EP and IJ printer (PCR-ID:AD-04)

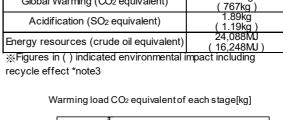
🔇 КУОСЕRӘ

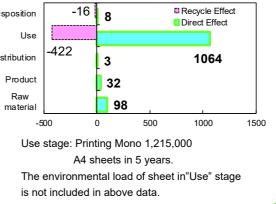
ECOSYS P3145dn

No. AD-19-E1151 Date of publication 08/05/2019

> All the stage sum totals 1205kg

http://www.kyoceradocumentsolutions.co.jp/


Contact us **KYOCERA** Document Solutions Inc. **Corporate CSR Division** Product Environmental Planning Dep. TEL: +81-6-6764-3760


Making Technology:Electrophotographic Printer(EP) Printng Speed: Monoclome 45Pages per minute in A4 Maximum priting paper: A4 **Duplex function: Standard**

[The Environmental load for life-cycle]

Consumption and discharge in a life cycle

		Global V	Varming (CC	D2 equival	ent)
		Acidifi	cation (SO ₂	equivale	nt)
- Andrew - A		Energy res	ources (cru	de oil equ	iivale
18 KAIOCERA	and the second s	※Figures in recycle effe	n () indicate ect *note3	ed enviror	iment
	I	W	arming load	CO ₂ equi	valen
	•	Disposition	-16	8	
		Use			
	12	Distribution	-422	3	
		Product		32	
		Raw material		98	
		-5	00	0	500
		Use	stage: Prin	ting Mon	o 1,2
			A4 s	heets in a	5 yea
		The	environmer	ntal load	of sh

Notes

1. Original LCA data is available on PEIDS: Product Environmental Information Declaration Sheet, and Product Data Sheet.

2. Unified rules and requirements for EcoLeaf LCA, for intended product category, are available as a PCR: Product Specification Criteria.

- Visit EcoLeaf website under JEMAI homepage at http://www.jemai.or.jp/ecoleaf_e/ for details. 3. Recycle Effect illustrates an indirect influence to other products/services.
- 4. Basic Units used for calculations are based on Japan domestic data at this time, due to a lack of base data to establish localized Basic Unit for overseas locations adequately.
- 5. This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

[Supplemental environmental information]

- Conformed to the International ENERGY STAR® Program.
- Manufactured at ISO14001 certified factories.

Plastic housing and outer package: halogenated flame retardants are not

PCR review was conducted by : PCR Deliberation Committee, January 01,2008, Name of reprentative : Youji Uchiyama, Independent verification of the declaration and data, according to ISO14025:2006 [internal external] Third party verifier: Hiroo Sakazaki

Programme operator: Japan Environmental Management Association for Industry, ecoleaf@jemai.or.jp

* In the case of an business entity certified as an Ecoleaf-data-collection system, the names of certification auditors are written. The EcoLeaf is an environmental labeling program that belongs to the ISO-Type III category.

Product Environmental Information Data Sheet (PEIDS)

Unit Function DB version

Characterization Factor DB version

Document control no.	F-02Bs-02
Product vendor	KYOCERA Document Solutions Inc.
EcoLeaf registration no.	AD-19-E1151

-									
	PCR name	EP and IJ print	er	Product type	ECOSYS P3145dn				
	PCR code	AD-04	Product weight (kg)	15.06	Package (kg)	3.89	Weight total (kg)	18.95	

	_	_		Life Cycle Stage		Prod	uction				Recycle
In/Or	ut iten	nc			Unit	Raw material	Product	Distribution	Use	Disposition	Effect
11/00	u nen	115							0.455.04	1.055.00	
		Er	nergy C	Consumption	MJ	1.83E+03	6.64E+02	3.86E+01	2.15E+04	1.05E+02	-7.84E+03
	-				Mcal	4.37E+02	1.59E+02	9.23E+00	5.12E+03	2.50E+01	-1.87E+03
			urces	Coal	kg	9.96E+00	3.92E+00	9.02E-05	7.25E+01	2.96E-02	-1.28E+01
			reso	Crude oil (for fuel)	kg	1.88E+01	4.84E+00	8.44E-01	2.48E+02	2.20E+00	-1.20E+02
			ergy	LNG	kg	3.55E+00	1.96E+00	1.30E-02	4.35E+01	4.83E-02	-6.55E+00
		-	Ē	Uranium content of an ore	kg	3.52E-04	2.65E-04	6.12E-09	4.36E-03	2.00E-06	-5.29E-04
	u			Crude oil (for material)	kg	7.62E+00	0	0	5.49E+01	0	-3.26E+01
	pti	ŝ		Iron content of an ore	kg	4.93E+00	0	0	6.61E+00	0	-4.40E+00
	Ę	ő		Cu content of an ore	kg	5.05E-01	0	0	7.31E-02	0	-3.57E-01
	ารเ	N		Al content of an ore	kg	2.84E-01	0	0	9.60E-01	0	-4.80E-01
	ō	es	Se	Ni content of an ore	kg	2.31E-02	0	0	7.86E-02	0	-4.07E-02
	e	e	õ	C content of an ore	kg	3.27E-02	0	0	1.09E-01	0	-5.66E-02
	2	tibl	no	Mn content of an ore	kg	2.70E-02	0	0	4.77E-02	0	-9.55E-03
	Impact by Resource Consumption	Exhaustible resources	resources	Pb content of an ore	kg	3.29E-02	0	0	5.93E-03	0	-2.90E-02
	Sec	ha	27	Sn content of an ore	kg	0	0	0	0	0	0
	Ϋ́Ε	Ш	Mineral	Zn content of an ore	kg	3.23E-01	0	0	5.84E-02	0	-2.85E-01
	Ē	_	۸ir	Au content of an ore	kg	0	0	0	0	0	0
	aci		~	Ag content of an ore	kg	0	0	0	0	0	0
es	du			Silica Sand	kg	4.36E-01	0	0	3.24E-01	0	-2.02E-01
iys	-			Halite	kg	1.68E+00	0	0	7.30E-01	2.28E-04	-6.68E-01
na				Limestone	kg	1.25E+00	0	0	1.51E+00	1.48E-02	-7.69E-01
a/				Natural soda ash	kg	3.03E-02	0	0	2.57E-02	0	-8.47E-03
or				Wood	kg	8.04E+00	0	0	6.14E+02	0	-6.08E+02
Inventory anaiyses			Į.	Water	kg	9.32E+03	3.26E+03	6.84E-02	9.20E+04	2.26E+01	-2.84E+04
Ň	ent			CO2	kg	9.52E+01	3.18E+01	2.75E+00	1.05E+03	7.57E+00	-4.29E+02
-	Ĕ		e e	Sox	kg	6.50E-02	2.38E-02	1.40E-03	5.08E-01	8.95E-03	-1.30E-01
	irot		je	Nox	kg	1.26E-01	2.14E-02	8.44E-03	1.57E+00	1.08E-01	-8.19E-01
	2 L		spl	N2O	kg	8.82E-03	6.05E-04	5.26E-04	6.80E-02	1.29E-04	-3.15E-02
	e		ĝ	CH4	kg	9.37E-04	1.60E-02	1.63E-08	1.16E-02	5.35E-06	-1.42E-03
	t		Atr	CO	kg	1.27E-02	4.60E-03	1.30E-03	1.47E-01	4.14E-02	-2.87E-02
	eto		to Atmosphere	NMVOC	kg	1.83E-03	1.39E-03	3.20E-08	2.28E-02	1.05E-05	-2.76E-03
	arge		-	CxHy	kg	4.10E-03	2.10E-04	3.20E-04	2.50E-02	2.17E-03	-1.50E-02
	châ			Dust BOD	kg	1.29E-02	1.35E-03 1.85E-03	9.15E-04	6.01E-02	8.61E-03	-2.92E-02
	Dis	sterr	domain	ROD	kg	-	1.85E-03	-	-	-	-
	Emission/Discharge to the environment	to Water system	dor	N total	kg kg	-	-	-	-	-	-
	ssic	ater	Water		0	-	-	-	-	-	-
	Шį	× ×	o Ma	P total	kg	-	-	-	-	-	-
	Ш	Ę	4	SS Uppresified Solid Wester	kg	- 8.57E-01	- 1.07E-02	- 0	- 2.60E+01	- 7.45E-06	- -3.44E+00
	t b.		ster	Unspecified Solid Waste	kg	2.40E+00	1.07E-02	0	2.00E+01 2.24E+00	7.45E-06	-3.44E+00 -1.68E+00
	ac		ilsy	Slag	kg ka	5.15E-01	0	0	2.24E+00 2.06E+00	0	-1.03E+00
	mpact by		io Soil	Sludge Low level radio-active waste	kg ka	2.47E-04	1.85E-04	4.27E-09	3.04E-03	1.40E-06	-3.70E-04
t.			t	Energy resources (crude oil equivalent)	· · · · · · · · · · · · · · · · · · ·	3.24E+01	1.19E+01	4.27E-09 8.60E-01	3.83E+02	2.30E+00	-1.40E+02
assessment	by Res			Energy resources (crude oil equivalent) Mineral resources (Iron ore equivalent)	kg ka	1.61E+02	0	0.000-01	1.24E+02	2.30E+00	-1.62E+02
ssn			9	Global Warming (CO2 equivalent)		9.76E+01	3.23E+01	2.89E+00	1.06E+03	7.61E+00	-4.37E+02
se	witerea		pher	Acidification (SO2 equivalent)	kg	1.54E-01	3.88E-02	7.31E-03	1.61E+00	8.46E-02	-4.37E+02 -7.04E-01
as	ange to e		sou	Ozone Depletion (CFC-11 equivalent)	kg	1.54E-01 0	3.88E-02	7.31E-03	1.61E+00	0.40E-02	-7.04E-01
Impact a	níDish	[⊈] Pho		kg	7.66E-03	1.33E-03	5.01E-04	4.40E-02	4.40E-03	-1.89E-02	
dm	Drimo		Photochemical Oxidant Eutrophication (Phosphate equivalent)	kg	7.00⊑-03	1.33E-03	0	4.40E-02	4.40E-03	-1.09E-02	
_	£		-	Europhication (Phosphate equivalent)	kq	U U	U	0	U U	Ū	Ū

[Notes for readers: Ecol eaf common rules]

I. Stage related

A. "Production" stage is intended for two sub-stages listed below.

(1) "Raw material" production: consists of mining, transportation and raw material production.

(2) "Product" production: consists of the parts processing, assembly and installation.

B. "Distribution" stage is intended for transportation of produced product. Transportation of consumables and maintenance goods (e.g. replacement parts) for use of the product are included into "Use" stage.

C "Use" stage is intended for use of the product (active mode, standby mode, etc.) and production, transportation to disposal/recycle of consumables/maintenance goods (e.g. replacement parts)

D. "Disposition/Recycle" stage is intended for environmental impacts by product disposition/recycle, and deduction by recycling (e.g. impact reduction of raw material production).

E. "Recycle Effect" illustrates an indirect environmental influences to other products/services by use of reclaimed materials/parts. and/or by supply of used products to other businesses for material reclaim/parts reuse. Case 1: Use of reclaimed materials/parts: Sum of increase of environmental impact by collection activities of used materials/parts, and decrease by volume reduction of used materials/parts. Case 2: Supply of used products to other businesses for material reclaim/parts reuse: Sum of increase of environmental impact by materials/parts reclaiming process, and decrease by volume reduction of new materials/parts production.

II. Inventory analyses

A. Data of mineral ore on "Exhaustible resources" are presented in weight of pure ingredients (e.g. iron, aluminum) in the ore.

B. Data on energy resources are presented based on origin in calorific value. e.g. Data on uranium ore presents weight of uranium concentrate, which is available for use as an atomic fuel.

C. Data of discharge to water system are in actual figure (not calculated using unit function in inventory analyses).

III Impact analyses

Result of the "Impact analyses" is found in converting results of inventory analyses into total amount of a reference material (e.g. CO2 in case of "Global Warming").

A. Impact "by resource consumption" represents magnitude of impacts to resource depletion.

B. Impact "by emission/discharge to environment" represents magnitude of impacts to Atmosphere. Water and Soil system.

IV Data entry format

A. Exponential notation, after the decimal point to two, should be used.

B. Indicate "0" instead exponential notation, if the result of calculation or estimation is considered as "zero" or negligible in comparison to related results.

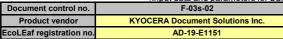
C. Indicate " - " if calculation nor estimation can not be done, in order to differentiate to indicate "zero".

(BGD for material production are for production from mineral ore. Those data do not include reclaiming processes like recovery from scrap.)

[Notes for readers: Target product specific]

1.We include package and attached articles, such as CD-ROM, operation manual in the product weight. Toner container as standard is included in the use stage, not in the product weight,

2. Production stage: Environmental impacts on main product, toner supplied with and drum are included in this stage. Production of main product is included as China production. Toner and drum are included as Japan production. 3.Transportation stage: Marine transport distance of a main product is 2,600km and domestic transport distance based on PCR provisions is 100km.


4.Use stage: Based on PCR provision, impact on 1,215,000 sheets monochrome printing by user for five years is considered.

5.Disposal/Recycle: We have calculated on the basis of a performance-based recycle scenario

This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the gualitative and guantitative data collected in Japan

Product data sheet

(Input data and parameters for LCA)

	PCR name	EP & IP Prin	ter(PCR-ID:AD-04)	Product t	уре			EC	OSYS P	3145dn	
LC	VLCIA in units of:		1 Unit F		ht (kg) 15.06 Packa		Package	e (kg)	3.89	Weight total (kg)	18.95
1. Pro	duct information (per	r unit): parts etc. by	material and by process/a	ssembly m	ethod						
		Breakdown of p	rimary materials		Math br	eakdown of pa	arts, which	need to ap	ply Proces	sing / Assembly Base Un	its (Parts B, C)
	Material name	e Weight (kg)	Material name	Weight (kg)	Pr	ocess nam	e ۱	Neight (k	(g)	Process name	Weight (kg)
	Carbon steel(k	g) 4.18E+00	Paper (kg)	3.72E+00	Press	Press molding:Iron (kg)		4.33E+0	0 Pa	rts assembly (kg)	1.89E+01
	SUS (kg)	1.45E-01	Assembled circuit board (kg)	9.99E-01	Press mold	olding:Nonferrous metal (kg)		1.02E+0	0		
÷	Cu (kg)	8.85E-01	Medium-sized motor (kg)	5.04E-01	Injecti	ion molding	g (kg)	8.17E+0	0		
duct	Al (kg)	2.27E-01			Blov	v molding (kg)	3.26E-0	2		
2	Glass (kg)	6.61E-02			Glas	s molding	(kg)	6.61E-0	2		
ā	Thermoplastics resi	in (kg) 8.09E+00									
	thermosetting resir	n (kg) 1.06E-01									
	Rrubber (kg)	1.82E-02									
	Subtotal	1.37E+01	Subtotal	5.23E+00							
		Total		1.90E+01		Subtotal		1.36E+0	1	Subtotal	1.89E+01

Note

2. Production site information (per unit): Consumption and discharge/emission for production/processing/assembly within the site.

SOx and NOx should be indicated in SO₂, NO₂ equivalent.

tion	Classification	Energy	Material	Energy	Energy		
mpti	Distribution	Electricity (kWh)	Industrial water (kg)	Heavy oil as fuel (kg)	Gasoline as fuel (kg)		
	Quantity	5.28E+01	2.83E+02	4.04E-01	7.85E-03		
Const	Note						
arge	Classification	Water system	Atmosphere				
Disch	Distribution	BOD	CH4				
sion/	Quantity	1.85E-03	1.53E-02				
Emis	Note						

Note

3. Distribution stage information (per unit): means, distance, loading ratio, consumptions and emissions/discharges.

u	Means of transportation	Diesel truck:10 ton (kg·km)	Freight by ship (kg·km)						
orti	Conditions	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)
strib	Quantity	1.90E+01	1.00E+02	8.19E+01	2.31E+03	1.90E+01	2.60E+03	1.00E+02	4.93E+04
Dis	Note								
Note									

4. Use stage (per unit): use condition (mode, term) including active mode, standby mode and maintenance.

4.1 Product and accessories subject to this analysis

	Classification	Process	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption
	Distribution	Diesel truck:2 ton (kg·km)	Electricity (kWh)	Industrial water (kg)	Press molding: Iron(kg)	Press molding:Nonferrous metal (kg)	Injection molding (kg)	Blow molding (kg)	Glass molding (kg)
	Quantity	4.36E+04	6.85E+02	2.64E+02	6.71E+00	9.64E-01	3.42E+01	7.28E-02	1.86E-01
	Note								
.	Classification	Process	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption
Product	Distribution	Parts assembly (kg)	Carbon steel(kg)	SUS (kg)	Cu (kg)	Al (kg)	Glass (kg)	Thermoplastics resin (kg)	Thermosetting resin (kg)
roc	Quantity	3.30E+02	6.22E+00	4.97E-01	5.66E-02	9.08E-01	1.86E-01	6.64E+01	3.45E-01
	Note								
	Classification	Consumption	Consumption	Consumption					
	Distribution	Rrubber (kg)	Paper (kg)	Assembled circuit board (kg)					
	Quantity	7.93E-02	2.87E+02	4.06E-01					
	Note								

Note

4.2 Disposition/Recycle information on consumables and replacement parts

	Classification	Process	Process	Process	Process	Process	Process	Process	Deduction
	Distribution	Recycle:to copper plate (kg)	Recycle:to Thermoplastic pellet (kg)	Recycle:to corrugated cardboard (kg)	Shredding (kg)	Recycle:to cold-rolled steel (kg)	Recycle:to Aluminum plate (kg)	Recycle:to Glass (kg)	Carbon steel(kg)
les	Quantity	2.28E-01	3.04E+01	2.84E+02	3.30E+02	2.69E+00	3.63E-01	7.46E-02	2.49E+00
mab	Note								
Insi	Classification	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction		
Cor	Distribution	SUS (kg)	Cu (kg)	Al (kg)	Glass (kg)	Thermoplastics resin (kg)	Paper (kg)		
-	Quantity	1.99E-01	2.28E-01	3.63E-01	7.46E-02	3.04E+01	2.84E+02		
	Note								

Note

5. Disposition/Recycle stage information (per product): process method and scenarios

	Classification	Process	Process	Process	Process	Process	Process	Process	Process
	Distribution	Diesel truck:10 ton (kg·km)	Diesel truck:2 ton (kg·km)	Incineration: Industrial waste (kg)	Electricity (kWh)	Shredding (kg)	Recycle:to cold-rolled steel (kg)	Recycle:to copper plate (kg)	Recycle:to Aluminum plate (kg)
	Quantity	9.26E+02	4.09E+04	2.28E-01	5.00E-01	1.89E+01	1.73E+00	9.55E-01	9.08E-02
	Note								
•	Classification	Process	Process	Process	Deduction	Deduction	Deduction	Deduction	Deduction
Scenario	Distribution	Recycle:to Thermoplastic pellet (kg)	Recycle to corrugated cardboard (kg)	Recycle:to Glass (kg)	Carbon steel(kg)	SUS (kg)	Cu (kg)	AI (kg)	Glass (kg)
cer	Quantity	3.24E+00	1.49E+00	2.65E-02	1.67E+00	5.81E-02	9.55E-01	9.08E-02	2.65E-02
S	Note								
	Classification	Deduction	Deduction						
	Distribution	Thermoplastics resin (kg)	Paper (kg)						
	Quantity	3.24E+00	1.49E+00						
	Note								
Note									

6. Others

This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.