Product Environmental Aspects Declaration

EP and IJ Printer (PCR-ID:AD-04)

No. AD-20-E1182 Date of publication 2/3/2020

TASKalfa 7353ci

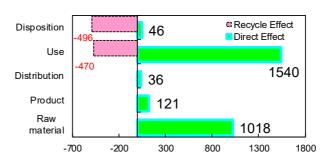
http://www.kyoceradocumentsolutions.co.jp/

Contact us KYOCERA Document Solutions Inc. CSR Division

Product Environmental Planning Dep.

TEL: +81-6-6764-3760

Making Technology:Electrophotographic Printer (EP) Printng Speed: Monoclome 73Pages per minute in A4 Color 65Pages per minute in A4


Maximum priting paper: A3 Duplex function: Standard

[The Environmental load for life-cycle]

	•
Consumption and discharge in a life cycle	All the stage sum totals
Global Warming (CO ₂ equivalent)	2762kg (1795kg)
Acidification (SO ₂ equivalent)	4.5kg (2.6kg)
Energy resources (crude oil equivalent)	56,915MJ (38,183MJ)

※Figures in () indicated environmental impact including recycle effect *note3

Warming load CO₂ equivalent of each stage[kg]

Use stage: Printing Mono 1598700/Color1267500 A4 sheets in 5 years.

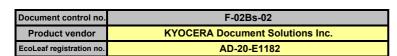
The environmental load of sheet in "Use" stage is not included in above data.

Notes

- 1. Original LCA data is available on PEIDS: Product Environmental Information Declaration Sheet, and Product Data Sheet.
- 2. Unified rules and requirements for EcoLeaf LCA, for intended product category, are available as a PCR: Product Specification Criteria. Visit EcoLeaf website under homepage at http://www.ecoleaf-jemai.jp/eng/pcr.html for detail. for details.
- 3. Recycle Effect illustrates an indirect influence to other products/services.
- 4. Basic Units used for calculations are based on Japan domestic data at this time, due to a lack of base data to establish localized Basic Unit for overseas locations adequately.
- 5. This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

[Supplemental environmental information]

- ●Conformed to the International ENERGY STAR® Program .
- Manufactured at ISO14001 certified factories.
- Plastic housing and outer package: halogenated flame retardants are not used.


PCR review was conducted by: PCR Deliberation Committee, January 01,2008, Name of reprentative: Youji Uchiyama, Independent verification of the declaration and data, according to ISO14025:2006 ☐ internal ■ external Third party verifier: < name of the third party verifier *> Hiroo Sakazaki

Programme operator Sustainable Management Promotion Organization ecoleaf@sumpo.or.jp

^{*} In the case of an business entity certified as an Ecoleaf-data-collection system, the names of certification auditors are written.

The EcoLeaf is an environmental labeling program that belongs to the ISO-Type III category.

Product Environmental Information Data Sheet (PEIDS)

PCR name	EP and IJ Printe	Product type	TASKalfa 7353ci				
PCR code	AD-04	Product weight (kg)	186.61	Package (kg)	38.3	Weight total (kg)	224.91

				Life Cycle Stage		Produ	uction				Recycle
In/O	ut iten	าร			Unit	Raw material	Product	Distribution	Use	Disposition	Effect
		Г.		\+:	MJ	1.75E+04	2.19E+03	4.89E+02	3.66E+04	1.70E+02	-1.87E+04
		Er	nergy C	Consumption	Mcal	4.17E+03	5.24E+02	1.17E+02	8.74E+03	4.07E+01	-4.47E+03
			e s	Coal	kg	1.52E+02	1.55E+01	1.14E-03	1.59E+02	2.92E-01	-1.53E+02
			inos	Crude oil (for fuel)	kg	1.61E+02	1.77E+01	1.07E+01	3.11E+02	3.15E+00	-1.59E+02
			gy re	LNG	ka	3.28E+01	7.72E+00	1.65E-01	9.19E+01	1.91E-01	-2.20E+01
			Ele	Uranium content of an ore	kg	3.25E-03	1.04E-03	7.75E-08	7.88E-03	1.98E-05	-7.75E-04
	Ë			Crude oil (for material)	kg	5.57E+01	0	0	1.34E+02	0	-1.17E+02
	l∺	S		Iron content of an ore	kg	1.12E+02	0	0	2.67E+01	0	-1.29E+02
	Ε̈́	ce		Cu content of an ore	kg	3.75E+00	0	0	4.05E-01	0	-6.59E+00
	Consumption	Σ		Al content of an ore	kg	5.33E+00	0	0	7.58E+00	0	-1.22E+01
	l ö	SSC	S	Ni content of an ore	kg	6.17E-01	0	0	7.07E-01	0	-1.32E+00
		9 6	င္ပ	C content of an ore	kg	8.71E-01	0	0	9.67E-01	0	-1.84E+00
	5	ple	no	Mn content of an ore	kg	6.50E-01	0	0	2.50E-01	0	-2.99E-01
	no	ısti	esi	Pb content of an ore	kg	1.86E-01	0	0	2.36E-02	0	-5.43E-01
	es	าลเ	<u></u>	Sn content of an ore	kg	0	0	0	0	0	0
	by Resource	Exhaustible resources	Mineral resources	Zn content of an ore	kg	1.84E+00	0	0	2.67E-01	0	-5.39E+00
	þ	ш	≟	Au content of an ore	kg	0	0	0	0	0	0
	mpact l		≥	Ag content of an ore	kg	0	0	0	0	0	0
S S	ğ			Silica Sand	kg	5.35E+00	0	0	6.06E-01	0	-4.30E+00
ys	드			Halite	kg	2.92E+01	0	0	7.64E+00	2.33E-02	-3.12E+01
anaiyses				Limestone	kg	2.42E+01	0	0	5.64E+00	1.51E+00	-2.24E+01
ਰ				Natural soda ash	kg	3.97E-01	0	0	2.78E-02	0	-1.89E-01
nventory			a manual a	Wood	kg	5.17E+01	0	0	2.35E+02	0	-2.65E+02
ţ			Person	Water	kg	8.33E+04	1.19E+04	8.66E-01	1.22E+05	2.44E+02	-4.49E+04
١٨	ent			CO2	kg	9.96E+02	1.21E+02	3.48E+01	1.50E+03	4.55E+01	-9.40E+02
=	Ĭ		ø	Sox	kg	7.37E-01	9.19E-02	1.93E-02	1.16E+00	2.98E-02	-8.56E-01
	environment		<u>e</u>	Nox	kg	1.18E+00	7.47E-02	1.34E-01	1.91E+00	1.76E-01	-1.48E+00
	Ξ		ds	N2O	kg	8.11E-02	1.51E-03	6.28E-03	1.53E-01	2.38E-04	-9.78E-02
	9		ë	CH4	kg	8.59E-03	2.79E-03	2.07E-07	2.09E-02	5.29E-05	-1.83E-03
	ŧ		₹	CO	kg	1.58E-01	1.78E-02	2.87E-02	3.08E-01	5.47E-02	-1.87E-01
	e tc		to Atmosphere	NMVOC	kg	1.68E-02	5.47E-03	4.06E-07	4.09E-02	1.04E-04	-3.59E-03
	arg			CxHy	kg	3.90E-02	3.83E-04	4.47E-03	4.85E-02	2.64E-03	-4.68E-02
	che	- 1		Dust	kg	1.36E-01	4.18E-03	1.35E-02	1.39E-01	1.04E-02	-1.67E-01
	Oisi	system	nair	BOD COD	kg	-	1.86E-02	-	-	-	-
	J/uc	sks	- P		kg	-	-	-	-	-	-
	ssic	ater	ater	N total P total	kg kg	-	-	-	-	-	-
	Emission/Discharge to the	to Water s	o Water domain	SS S		-	-	-	-	-	-
		ž	-	Unspecified Solid Waste	kg kg	7.46E+00	8.55E-03	0	6.27E+01	7.63E-04	-1.32E+01
	t by		system	Slag	kg	3.78E+01	0.55E-05	0	8.93E+00	0	-4.62E+01
	Jac			Sludge	kg kg	1.00E+01	0	0	1.61E+01	0	-4.62E+01 -2.61E+01
	Impact		to Soil	Low level radio-active waste	ka ka	2.27E-03	7.30E-04	5.41E-08	5.49E-03	1.38E-05	-5.42E-04
)ue	-		-	Energy resources (crude oil equivalent)	kg	3.25E+02	4.55E+01	1.09E+01	5.88E+02	3.73E+00	-2.89E+02
SS III	and a state of		And the same	Mineral resources (Iron ore equivalent)	ka	1.51E+03	0	0	7.85E+02	0.702.00	-3.26E+03
t asse			ê.	Global Warming (CO2 equivalent)	kg	1.02E+03	1.21E+02	3.65E+01	1.54E+03	4.55E+01	-9.66E+02
mpac			Ahrosp	Acidification (SO2 equivalent)	ka	1.56E+00	1.44E-01	1.13E-01	2.49E+00	1.53E-01	-1.89E+00
	-			ommon rules	ΝG		=				

[Notes for readers: EcoLeaf common rules]

I. Stage related

- A. "Production" stage is intended for two sub-stages listed below.
- (1) "Raw material" production: consists of mining, transportation and raw material production.
- (2) "Product" production: consists of the parts processing, assembly and installation.
- B. "Distribution" stage is intended for transportation of produced product. Transportation of consumables and maintenance goods (e.g. replacement parts) for use of the product are included into "Use" stage
- C. "Use" stage is intended for use of the product (active mode, standby mode, etc.) and production, transportation to disposal/recycle of consumables/maintenance goods (e.g. replacement parts).
- D. "Disposition/Recycle" stage is intended for environmental impacts by product disposition/recycle, and deduction by recycling (e.g. impact reduction of raw material production).
- E. "Recycle Effect" illustrates an indirect environmental influences to other products/services by use of reclaimed materials/parts, and/or by supply of used products to other businesses for material reclaim/parts reuse.

Case 1: Use of reclaimed materials/parts: Sum of increase of environmental impact by collection activities of used materials/parts, and decrease by volume reduction of used materials/parts.

Case 2: Supply of used products to other businesses for material reclaim/parts reuse: Sum of increase of environmental impact by materials/parts reclaiming process, and decrease by volume reduction of new materials/parts production.

- A. Data of mineral ore on "Exhaustible resources" are presented in weight of pure ingredients (e.g. iron, aluminum) in the ore.
- B. Data on energy resources are presented based on origin in calorific value, e.g. Data on uranium ore presents weight of uranium concentrate, which is available for use as an atomic fuel
- C. Data of discharge to water system are in actual figure (not calculated using unit function in inventory analyses).

Result of the "Impact analyses" is found in converting results of inventory analyses into total amount of a reference material (e.g. CO 2 in case of "Global Warming").

A. Impact "by resource consumption" represents magnitude of impacts to resource depletion.

B. Impact "by emission/discharge to environment" represents magnitude of impacts to Atmosphere, Water and Soil system

- A. Exponential notation, after the decimal point to two, should be used.
- B. Indicate "O" instead exponential notation, if the result of calculation or estimation is considered as "zero" or negligible in comparison to related results.
- C. Indicate " " if calculation nor estimation can not be done, in order to differentiate to indicate "zero".

(BGD for material production are for production from mineral ore. Those data do not include reclaiming processes like recovery from scrap.)

[Notes for readers: Target product specific]

- 1. We include package and attached articles, such as CD-ROM, operation manual in the product weight. Toner container as standard is included in the use stage, not in the product weight.
- 2. Production stage: Environmental impacts on main product, toner supplied with and drum are included in this stage. Production of main product is included as China production. Toner and drum are included as Japan production.
- 3.Transportation stage: Marine transport distance of a main product is 2.600km and domestic transport distance based on PCR provisions is 100km.
- 4.Use stage: Based on PCR provision, impact on 1,598,700 sheets monochrome,1,267,500 sheets color printing by user for five years is considered.
- 5.Disposal/Recycle: We have calculated on the basis of a performance-based recycle scenario.
- This declaration was produced using Product Category Rule intended for a product model sold in the Japanese market and using the qualitative and quantitative data collected in Japan.

Product data sheet

(Input data and parameters for I CA

	(Iliput data aliu paralileteis ioi LCA)
Document control no.	F-03s-02
Product vendor	KYOCERA Document Solutions Inc.
EcoLEaf registration no.	AD-20-E1182

PCR name	EP and IJ printer (PCR-ID:AD-04)	Product type	TASKalfa 7353ci				
LCA/LCIA in units of:	1 Unit	Product weight (kg)	186.61	Package (kg)	38.3	Weight total (kg)	224.91

1. Product information (per unit): parts etc. by material and by process/assembly method

	Bre	eakdown of p	rimary materials		Math breakdown of parts, which	ch need to apply	Processing / Assembly Base Ur	nits (Parts B, C)
	Material name	Weight (kg)	ght (kg) Material name		Process name	Weight (kg)	Process name	Weight (kg)
	Carbon steel(kg)	9.89E+01	Rubber (kg)	1.45E-01	Press molding:Iron (kg)	1.03E+02	Parts assembly (kg)	2.24E+02
	SUS (kg)	3.89E+00	Paper (kg)	1.41E+01	Press molding:Nonferrous metal (kg)	7.28E+00		
	Cu (kg)	3.54E+00	Wood (kg)	2.10E+01	Injection molding (kg)	6.02E+01		
roduct	Al (kg)	4.41E+00	Assembled circuit board (kg)	8.58E+00	Blow molding (kg)	3.89E-01		
Š	Other metals (kg)	3.62E-02	Medium-sized motor (kg)	7.58E+00	Glass molding (kg)	2.19E+00		
<u> </u>	Glass (kg)	2.19E+00						
	Thermoplastics resin (kg)	5.96E+01						
	Thermosetting resin (kg)	9.54E-01						
	Subtotal	1.74E+02	Subtotal	5.14E+01				
		Total		2.25E+02	Subtotal	1.73E+02	Subtotal	2.24E+02

Note

2. Production site information (per unit): Consumption and discharge/emission for production/processing/assembly within the site.

SOx and NOx should be indicated in SO₂, NO₂ equivalent.

on	Classification	Energy	Material	Energy	Energy			
T t	Distribution	Electricity (kWh)	Industrial water (kg)	Heavy oil as fuel (kg)	Gasoline as fuel (kg)			
Consumption	Quantity	3.46E+01	2.27E+02	2.88E-01	3.32E-03			
S	Note							
arge	Classification	Water system						
Disch	Distribution	BOD						
Emission/	Quantity	1.86E-02						
	Note	•				•	·	

Note

3. Distribution stage information (per unit): means, distance, loading ratio, consumptions and emissions/discharges.

Distribution	Means of transportation	Diesel truck:10 ton (kg·km)	Freight by ship (kg·km)						
	Conditions	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)	Mass(kg)	Distance (km)	Loading Ratio(%w)	Load(kg·km)
	Quantity	2.25E+02	1.00E+02	4.05E+01	5.55E+04	2.25E+02	2.60E+03	1.00E+02	5.85E+05
	Note								

Note

4. Use stage (per unit): use condition (mode, term) including active mode, standby mode and maintenance.

4.1 Product and accessories subject to this analysis

	Classification	Process	Consumption	Consumption	Process	Process	Process	Process	Process
	Distribution	Diesel truck:2 ton (kg·km)	Electricity (kWh)	Industrial water (kg)	Injection molding (kg)	Blow molding (kg)	Parts assembly (kg)	Press molding:Iron (kg)	Press molding:Nonferrous metal (kg)
	Quantity	7.25E+04	1.62E+03	1.99E+00	6.91E+01	6.92E-01	2.12E+02	2.40E+01	6.05E+00
	Note								
	Classification	Process	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption	Consumption
duct	Distribution	Glass molding (kg)	Carbon steel(kg)	SUS (kg)	Cu (kg)	Al (kg)	Other metals (kg)	Glass (kg)	Thermoplastics resin (kg)
Prod	Quantity	5.69E-02	2.34E+01	4.47E+00	3.22E-01	7.09E+00	7.24E-02	5.69E-02	1.71E+02
_	Note								
	Classification	Consumption	Consumption	Consumption	Consumption	Consumption			
	Distribution	Thermosetting resin (kg)	Rrubber (kg)	Paper (kg)	Assembled circuit board (kg)	Medium-sized motor (kg)			
	Quantity	1.11E+00	1.99E-01	1.10E+02	9.29E-01	9.06E-01			
	Note								

Note

4.2 Disposition/Recycle information on consumables and replacement parts

	Classification	Process	Process	Process	Process	Process	Process	Process	Deduction
	Distribution	Shredding (kg)	Recycle:to copper plate (kg)	Recycle:to Thermoplastic pellet (kg)	Recycle:to corrugated cardboard (kg)	Recycle:to cold-rolled steel (kg)	Recycle:to Aluminum plate (kg)	Recycle:to Glass (kg)	Carbon steel(kg)
nables	Quantity	2.16E+02	2.16E+00	6.87E+01	1.10E+02	2.79E+01	7.09E+00	5.69E-02	2.34E+01
	Note								
l II	Classification	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction	Deduction	
S	Distribution	SUS (kg)	Cu (kg)	Al (kg)	Other metals (kg)	Glass (kg)	Thermoplastics resin (kg)	Paper (kg)	
	Quantity	4.47E+00	2.16E+00	7.09E+00	7.24E-02	5.69E-02	6.87E+01	1.10E+02	
	Note								

Note

5. Disposition/Recycle stage information (per product): process method and scenarios

	Classification	Process	Process	Process	Consumption	Process	Process	Process	Process
	Distribution	Diesel truck:10 ton (kg·km)	Diesel truck:2 ton (kg·km)	Incineration: Industrial waste (kg)	Electricity (kWh)	Shredding (kg)	Recycle:to cold-rolled steel (kg)	Recycle:to copper plate (kg)	Recycle:to Aluminum plate (kg)
	Quantity	2.22E+04	3.94E+04	2.33E+01	5.60E-01	2.03E+02	1.03E+02	1.97E+01	4.41E+00
	Note								
	Classification	Process	Process	Process	Deduction	Deduction	Deduction	Deduction	Deduction
Scenario	Distribution	Recycle:to Thermoplastic pellet (kg)	Recycle to corrugated cardboard (kg)	Recycle:to Glass (kg)	Carbon steel(kg)	SUS (kg)	Cu (kg)	Al (kg)	Other metals (kg)
cer	Quantity	5.96E+01	1.41E+01	2.19E+00	9.89E+01	3.89E+00	1.97E+01	4.41E+00	3.62E-02
S	Note								
	Classification	Deduction	Deduction	Deduction					
	Distribution	Glass (kg)	Thermoplastics resin (kg)	Paper (kg)					
	Quantity	2.19E+00	5.96E+01	1.41E+01					
	Note								

Note

6. Others