

Notes:

1. The basic data is described on the product environmental information disclosure sheet (PEIDS) and product data sheet.

2. For unified standards for data calculation, please refer to product classification standard (PCR). Please visit http://www.ecoleaf-jemai.jp/ for details.

3. The country of shipment of this product is Japan, and it is calculated using data in Japan. Part of the basic unit data is using IDEA Ver 1.1.

4. It is calculated using the characterization coefficient v 02.1 of the Eco Leaf program.

# [Supplemental environmental information]

We manufacture it at a business site that has received ISO 14001 certification. (Head office site, Takatsuki site) Arsenic is not contained in this product.

PCR review was conducted by : September 1st.2016 Yuko Yamaguchi Affiliation Kyoritsu Women's Junior College Independent verification of the declaration and data, according to ISO14025, ISO21930 □internal ■external Third party verifier: Yasuo Koseki

Programme operator: Japan Environmental Management Association for Industry, ecoleaf@jemai.or.jp

\* In the case of an business entity certified as an Ecoleaf-data-collection system, the names of certification auditors are written. \* PCR is created in compliance with ISO14040, ISO14044, ISO14025, ISO21930.

# Product Environmental Information Data Sheet (PEIDS)



| Document control no.     | F-02As-02                       |
|--------------------------|---------------------------------|
| Product vendor           | Nippon Electric Glass Co., Ltd. |
| EcoLeaf registration no. | DP-18-001-A                     |

|  | U | nit F | unc | tio | n DB v | ersion |  |
|--|---|-------|-----|-----|--------|--------|--|
|  |   |       | _   |     |        |        |  |

Characterization Factor DB version

| PCR name | Fire-rated glass ceramics (inter | mediate product)    | Product type |              | firelite/ firel                    | ite premium |  |  |  |
|----------|----------------------------------|---------------------|--------------|--------------|------------------------------------|-------------|--|--|--|
| PCR code | DP-01-02                         | Product weight (kg) | 1            | Package (kg) | Package (kg) 0 Weight total (kg) 1 |             |  |  |  |
|          |                                  |                     |              |              |                                    |             |  |  |  |

|                  | _                                            |                              | _                   | Life Cycle Stage                        |      | Prod         | uction   |              |          |             |          |
|------------------|----------------------------------------------|------------------------------|---------------------|-----------------------------------------|------|--------------|----------|--------------|----------|-------------|----------|
| In/Ou            | ut iten                                      | ns                           |                     |                                         | Unit | Raw material | Product  | Distribution | Use      | Disposition | Total    |
|                  |                                              |                              |                     |                                         | MJ   | 1.27E+01     | 4.09E+01 | -            | -        | -           | 5.37E+01 |
|                  |                                              | E                            | nergy C             | Consumption                             | Mcal | 3.04E+00     | 9.78E+00 | -            | -        | -           | 1.28E+01 |
|                  |                                              |                              | 500                 | Coal                                    | kg   | 4.67E-02     | 8.57E-02 | -            | -        | -           | 1.32E-01 |
|                  |                                              |                              | sourc               | Crude oil (for fuel)                    | kg   | 1.98E-02     | 2.20E-01 | -            | -        | -           | 2.40E-01 |
|                  |                                              |                              | gy re               | LNG                                     | ka   | 2.88E-02     | 4.18E-01 | -            | -        | -           | 4.47E-01 |
|                  |                                              |                              | Ener                | Uranium content of an ore               | kg   | 7.31E-07     | 5.80E-06 | -            | -        | -           | 6.53E-06 |
|                  | ç                                            |                              |                     | Crude oil (for material)                | kg   | 1.01E-01     | 4.75E-04 | -            | -        | -           | 1.01E-01 |
|                  | tio                                          | 6                            |                     | Iron content of an ore                  | kġ   | 5.35E-05     | 4.74E-08 | -            | -        | -           | 5.36E-05 |
|                  | Ĕ                                            | resources                    |                     | Cu content of an ore                    | kġ   | 1.68E-07     | 1.12E-10 | -            | -        | -           | 1.68E-07 |
|                  | sul                                          | nu                           |                     | Al content of an ore                    | kġ   | 5.11E-01     | 3.66E-03 | -            | -        | -           | 5.15E-01 |
|                  | Ö                                            | so                           | S                   | Ni content of an ore                    | kġ   | 3.01E-07     | 4.02E-10 | -            | -        | -           | 3.02E-07 |
|                  | Ó                                            | Le Le                        | ce                  | C content of an ore                     | kġ   | 7.93E-07     | 1.13E-09 | -            | -        | -           | 7.95E-07 |
|                  | e.                                           | ble                          | n                   | Mn content of an ore                    | kġ   | 5.46E-07     | 5.25E-10 | -            | -        | -           | 5.46E-07 |
|                  | Inc                                          | stil                         | resources           | Pb content of an ore                    | kġ   | 7.43E-07     | 1.06E-09 | -            | -        | -           | 7.44E-07 |
|                  | e<br>So                                      | au                           |                     | Sn content of an ore                    | kġ   | 0.00E+00     | 0.00E+00 | -            | -        | -           | 0.00E+00 |
|                  | by Resource Consumption                      | Exhaustible                  | Mineral             | Zn content of an ore                    | kg   | 2.44E-08     | 2.75E-11 | -            | -        | -           | 2.44E-08 |
|                  | þ                                            | ш                            | ine                 | Au content of an ore                    | kğ   | 6.64E-11     | 8.62E-14 | -            | -        | -           | 6.65E-11 |
|                  | Impact                                       |                              | Σ                   | Ag content of an ore                    | kġ   | 1.66E-09     | 1.16E-12 | -            | -        | -           | 1.66E-09 |
|                  | ba                                           |                              |                     | Silica Sand                             | kğ   | 4.56E-01     | 1.42E-10 | -            | -        | -           | 4.56E-01 |
| analyses         | <u>=</u>                                     |                              |                     | Halite                                  | kġ   | 1.13E-02     | 6.46E-05 | -            | -        | -           | 1.13E-02 |
| l∕s              |                                              |                              |                     | Limestone                               | kğ   | 2.14E-01     | 8.22E-05 | -            | -        | -           | 2.14E-01 |
| na               |                                              | enewa<br>ble<br>ssourc<br>es |                     | Natural soda ash                        | kġ   | 4.36E-03     | 0.00E+00 | -            | -        | -           | 4.36E-03 |
|                  |                                              |                              |                     | Wood                                    | kġ   | 0.00E+00     | 0.00E+00 | -            | -        | -           | 0.00E+00 |
| D.               |                                              | Rene                         | bit<br>eso<br>es    | Water                                   | kġ   | 2.72E+02     | 1.57E+02 | -            | -        | -           | 4.29E+02 |
| nventory         | nt                                           |                              |                     | CO2                                     | kg   | 6.22E-01     | 2.03E+00 | -            | -        | -           | 2.65E+00 |
| Ě                | environment                                  |                              | 0                   | Sox                                     | kg   | 3.67E-04     | 6.47E-04 | -            | -        | -           | 1.01E-03 |
| -                | ū                                            |                              | ere                 | Nox                                     | kg   | 3.84E-04     | 2.68E-03 | -            | -        | -           | 3.06E-03 |
|                  | kir                                          |                              | Atmosphere          | N2O                                     | kg   | 2.93E-05     | 1.34E-03 | -            | -        | -           | 1.37E-03 |
|                  | en                                           |                              | so                  | CH4                                     | kġ   | 4.00E-04     | 1.72E-05 | -            | -        | -           | 4.17E-04 |
|                  | he                                           |                              | Ę                   | CO                                      | kğ   | 3.91E-05     | 3.44E-04 | -            | -        | -           | 3.83E-04 |
|                  | 0<br>t                                       |                              | ₹<br>Q              | NMVOC                                   | kġ   | 7.69E-06     | 3.04E-05 | -            | -        | -           | 3.81E-05 |
|                  | e                                            |                              | 9                   | CxHy                                    | kg   | 8.63E-06     | 2.36E-04 | -            | -        | -           | 2.45E-04 |
|                  | arc                                          |                              |                     | Dust                                    | kġ   | 5.31E-04     | 1.03E-04 | -            | -        | -           | 6.34E-04 |
|                  | S                                            | E                            | ain                 | BOD                                     | kg   | 1.47E-06     | 6.65E-09 | -            | -        | -           | 1.48E-06 |
|                  | Dis                                          | yste                         | domain              | COD                                     | kğ   | 3.45E-06     | 1.61E-08 | -            | -        | -           | 3.47E-06 |
|                  | )uc                                          | ers                          | er d                | N total                                 | kg   | 6.23E-08     | 8.43E-11 | -            | <u> </u> | -           | 6.23E-08 |
|                  | Emission/Discharge to the                    | to Water system              | Water               | P total                                 | kg   | 1.31E-13     | 1.82E-16 | -            | _        | -           | 1.31E-13 |
|                  | ,<br>mis                                     | 5                            | to                  | SS                                      | kg   | 3.05E-06     | 1.42E-08 | -            | -        | -           | 3.06E-06 |
|                  |                                              |                              | E                   | Unspecified Solid Waste                 | kg   | 5.03E-02     | 5.75E-03 | -            | _        | -           | 5.60E-02 |
|                  | þ                                            |                              | system              | Slag                                    | kg   | 9.43E-08     | 1.28E-10 | -            | -        | -           | 9.44E-08 |
|                  | Impact                                       |                              | il sy               | Sludge                                  | kg   | 8.04E-02     | 3.79E-04 | -            | _        | -           | 8.08E-02 |
|                  | np                                           |                              | Soil                | Low level radio-active waste            | kg   | 0.00E+00     | 0.00E+00 | -            | <u> </u> | -           | 0.00E+00 |
|                  | -                                            |                              | to                  | Hazardous waste                         | kg   | 8.94E-05     | 4.16E-06 | =            | =        | =           | 9.35E-05 |
| ant              | by<br>Res                                    | aust                         | ourc<br>burc        | Energy resources (crude oil equivalent) | kg   | 9.06E-02     | 8.28E-01 | -            | -        | -           | 9.19E-01 |
| me               | a w                                          | Exh                          | resourc<br>es       | Mineral resources (Iron ore equivalent) | kg   | 1.20E+00     | 8.41E-03 | -            | =        | -           | 1.20E+00 |
| ess              |                                              |                              | ere                 | Global Warming (CO2 equivalent)         | kg   | 6.38E-01     | 2.39E+00 | -            | -        | -           | 3.03E+00 |
| ISSE             | sion /<br>ge to<br>nent                      |                              | hqso                | Acidification (SO2 equivalent)          | kg   | 6.36E-04     | 2.52E-03 | -            | _        | -           | 3.16E-03 |
| mpact assessment | by Emission /<br>Discharge to<br>environment |                              | Atmospf             | Ozone Depletion (CFC-11 equivalent)     | kg   | -            | -        | -            | <u> </u> | -           | -        |
| pa               | by E<br>Disc<br>erwi                         |                              | to ∌                | Photochemical Oxidant                   | kg   | 2.30E-04     | 1.44E-04 | -            | -        | -           | 3.75E-04 |
| <u></u>          |                                              |                              | r<br>sys<br>te<br>m | Eutrophication (Phosphate equivalent)   | kg   | 1.02E-07     | 3.90E-10 | -            | -        | -           | 1.02E-07 |

[Notes for readers: EcoLeaf common rules]

I. Stage related

A. "Production" stage is intended for two sub-stages listed below.

(1) "Raw material" production: consists of mining, transportation and raw material production.

(2) "Product" production: consists of the parts processing, assembly and installation.

B. "Distribution" stage:Not subject to PCR

C. "Use" stage:Not subject to PCR

D. "Disposition" stage:Not subject to PCR

II. Inventory analyses

A. Data of mineral ore on "Exhaustible resources" are presented in weight of pure ingredients (e.g. iron, aluminum) in the ore.

B. Data on energy resources are presented based on origin in calorific value. e.g. Data on uranium ore presents weight of uranium concentrate, which is available for use as an atomic fuel

C. Data of discharge to water system are in actual figure (not calculated using unit function in inventory analyses).

D.Since hazardous waste is properly managed by Japanese domestic law, it is not included as a basic flow. E.As renewable energy is not used in system power.renewable energy is not recorded.

III Impact analyses

Result of the "Impact analyses" is found in converting results of inventory analyses into total amount of a reference material (e.g. CO<sub>2</sub> in case of "Global Warming").

A Impact "by resource consumption" represents magnitude of impacts to resource depletion

B. Impact "by emission/discharge to environment" represents magnitude of impacts to Atmosphere, Water and Soil system.

IV Data entry format

A. Exponential notation, after the decimal point to two, should be used.

B. Indicate "0" instead exponential notation, if the result of calculation or estimation is considered as "zero" or negligible in comparison to related results.

C. Indicate " - " if calculation nor estimation can not be done, in order to differentiate to indicate "zero".

D. The total column shows the total of material production and product manufacturing stages according to PCR. (BGD for material production are for production from mineral ore. Those data do not include reclaiming processes like recovery from scrap.)

[Notes for readers: Target product specific]

# **Product data sheet**

(Input data and parameters for LCA)

| Document control no.     | F-03s-02                         |
|--------------------------|----------------------------------|
| Product vendor           | Nippon Electric Glass Co. , Ltd. |
| EcoLEaf registration no. | DP-18-001-A                      |



0.00E+00

|                       | PCR name Fire-rated                                                                      |      |             | d glass ceramics (intermediate product) |               |               | pe firelite / firelite premium |                        |                  |                   |             |             |  |
|-----------------------|------------------------------------------------------------------------------------------|------|-------------|-----------------------------------------|---------------|---------------|--------------------------------|------------------------|------------------|-------------------|-------------|-------------|--|
| LCA/LCIA in units of: |                                                                                          | 1kg  |             | Product weig                            | jht (kg)      | 1             | Package                        | (kg)                   | 0                | Weight total (kg) | 1           |             |  |
| 1. Produ              | 1. Product information (per unit): parts etc. by material and by process/assembly method |      |             |                                         |               |               |                                |                        |                  |                   |             |             |  |
|                       |                                                                                          |      | Math br     | reakdown of pa                          | irts, which r | need to apply | Processi                       | ing / Assembly Base Ur | its (Parts B, C) |                   |             |             |  |
|                       | Material nar                                                                             | ne   | Weight (kg) | Material name                           | Weight (kg)   | F             | Process name                   |                        | Veight (kg)      | P                 | rocess name | Weight (kg) |  |
|                       | Silica sand                                                                              | 4    |             |                                         |               |               |                                |                        |                  |                   |             |             |  |
|                       | Aluminum ox                                                                              | ide  | 5.82E-01    |                                         |               |               |                                |                        |                  |                   |             |             |  |
| +                     | Lithium carbo                                                                            | nate |             |                                         |               |               |                                |                        |                  |                   |             |             |  |
| duct                  | glass                                                                                    |      | 5.20E-02    |                                         |               |               |                                |                        |                  |                   |             |             |  |
| roc                   | Reproductio                                                                              | on   | 3.66E-01    |                                         |               |               |                                |                        |                  |                   |             |             |  |
| <b>–</b>              |                                                                                          |      |             |                                         |               |               |                                |                        |                  |                   |             |             |  |

0.00E+00

1.00E+00

Subtotal

0.00E+00

Subtotal

Note:Heat resistant crystallized glass is cut and chamfered to make it as a product. There are no sashes installed.

1.00E+00

Total

#### 2. Production site information (per unit): Consumption and discharge/emission for production/processing/assembly within the site.

Subtotal

SOx and NOx should be indicated in SO<sub>2</sub>, NO<sub>2</sub> equivalent.

Subtotal

|         | Classification | Energy                  | Energy                  | Material                    | Energy                       | Material              | Energy           | Material | Material                    |
|---------|----------------|-------------------------|-------------------------|-----------------------------|------------------------------|-----------------------|------------------|----------|-----------------------------|
| ion     | Distribution   | Diesel oil as fuel (kg) | Electricity (kWh)       | Ultrapure water (kg)        | Furnace urban gas (13A) (m3) | Industrial water (kg) | Furnace LNG (kg) | Alumina  | Diesel truck:10 ton (kg·km) |
|         | Quantity       | 3.00E-03                | 1.55E+00                | 1.00E+00                    | 4.75E-01                     | 8.70E+01              | 9.56E-05         | 1.00E-03 | 8.55E+01                    |
| umption | Note           |                         |                         |                             |                              |                       |                  |          |                             |
| 5       | Classification | Material                |                         |                             |                              |                       |                  |          |                             |
| Con     | Distribution   | Freight by ship (kg·km) |                         |                             |                              |                       |                  |          |                             |
|         | Quantity       | 4.61E+03                |                         |                             |                              |                       |                  |          |                             |
|         | Note           |                         |                         |                             |                              |                       |                  |          |                             |
| arge    | Classification | Water system            | Soil system             | Soil system                 |                              |                       |                  |          |                             |
| Disch   | Distribution   | Sewage processing (kg)  | Unspecified Solid Waste | Landfill:General waste (kg) |                              |                       |                  |          |                             |
| sion/   | Quantity       | 1.10E+01                | 1.19E-03                | 1.00E-03                    |                              |                       |                  |          |                             |
| Emis    | Note           |                         |                         |                             |                              |                       |                  |          |                             |

Note:Mixing, manufacturing, melting and molding of heat resistant crystallized glass are at the head officd site, then inter-site transport is carried out, sintering, polishing, chamfering and cutting are done at the Takatsuki site in northern Shiga Prefecture.

## 3. Distribution stage information (per unit): means, distance, loading ratio, consumptions and emissions/discharges.

|         | Means of transportation |  |  |  |  |
|---------|-------------------------|--|--|--|--|
| outio   | Conditions              |  |  |  |  |
| Distrib | Quantity                |  |  |  |  |
| ä       | Note                    |  |  |  |  |
|         |                         |  |  |  |  |

Note

### 4. Use stage (per unit): use condition (mode, term) including active mode, standby mode and maintenance.

4.1 Product and accessories subject to this analysis

| ct   | Classification |  |  |  |  |
|------|----------------|--|--|--|--|
| duct | Distribution   |  |  |  |  |
| Proc | Quantity       |  |  |  |  |
|      | Note           |  |  |  |  |

Note

### 4.2 Disposition/Recycle information on consumables and replacement parts

| les  | Classification |  |  |  |  |
|------|----------------|--|--|--|--|
| nabl | Distribution   |  |  |  |  |
| Insu | Quantity       |  |  |  |  |
| Col  | Note           |  |  |  |  |

Note

5. Disposition/Recycle stage information (per product): process method and scenarios

| .0  | Classification |  |  |  |  |
|-----|----------------|--|--|--|--|
| lar | Distribution   |  |  |  |  |
| cer | Quantity       |  |  |  |  |
| s   | Note           |  |  |  |  |

Note

6. Others